1 |
Immobilized Ru(II) catalysts for transfer hydrogenation and oxidative alkene cleavage reactionsKotze, Hendrik de Vries 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The synthesis of a range of siloxane functionalized Ru(arene)Cl(N,N) complexes allowing for
the synthesis of novel MCM-41 and SBA-15 immobilized ruthenium(II) catalysts, is described in
this thesis. Two distinctly different approaches were envisaged to achieve successful
heterogenization of these siloxane functionalized complexes. Condensation of the siloxane
functionalized complexes, C2.4-C2.6 (siloxane tether attached to imine nitrogen) and C3.5-C3.7
(siloxane tether via the arene ring), with the surface silanols of the synthesized silica support
materials MCM-41 and SBA-15, afforded immobilized catalysts IC4.1-IC4.6 (siloxane tether
attached to imine nitrogen) and IC4.7-IC4.12 (siloxane tether via the arene ring).
Model and siloxane functionalized complexes C2.1-C2.6 were prepared by the reaction of
diimine Schiff base ligands L2.1-L2.6 with the [Ru(p-cymene)2Cl2]2 dimer. A second, novel,
approach involved the introduction of the siloxane tether on the arene ligand of the complex.
Cationic arene functionalized Ru(arene)Cl(N,N) complexes, C3.1-C3.4, were prepared with
varying N,N ligands including bipyridine and a range of diimine ligands, with either propyl or
diisopropyl(phenyl) substituents at the imine nitrogen (greater steric bulk around the metal
center). The reaction of these propanol functionalized complexes with 3-(triethoxysilyl)propyl
isocyanate, afforded urethane linked siloxane functionalized complexes C3.5-C3.8, where the
siloxane tether is attached to the arene ring of the complex. The complexes were fully characterized by FT-IR spectroscopy, NMR (1H and 13C)
spectroscopy, ESI-MS analysis and microanalysis. Suitable crystals for the alcohol
functionalized complex C3.1 were obtained and the resultant orange crystals were analyzed by
single crystal XRD. The heterogenized catalysts, IC4.1-IC4.12, were characterized by smallangle
powder X-ray diffraction, scanning and transmission electron microscopy (SEM and
TEM), thermal gravimetric analysis (TGA), inductively coupled plasma optical emission
spectroscopy (ICP-OES) and nitrogen adsorption/desorption (BET) surface analysis to name but
a few. ICP-OES allowed for direct comparison of the model and immobilized systems during
catalysis ensuring that the ruthenium loadings were kept constant.
The application of the model complexes C2.1-C2.3 and C3.1-C3.3, as well as their immobilized
counterparts, IC4.1-IC4.12, as catalyst precursors in the oxidative cleavage of alkenes (1-octene and styrene), were investigated. The proposed active species for the cleavage reactions was
confirmed to be RuO4 (UV-Vis spectroscopy). In general it was observed that at lower
conversions, aldehyde was formed as the major product. Increased reaction times resulted in the
conversion of the formed aldehyde to the corresponding carboxylic acid. For the oxidative
cleavage of 1-octene using the systems with the siloxane tether attached to the imine nitrogen,
the immobilized systems outperformed the model systems in all regards. Higher conversions and
selectivities of 1-octene towards heptaldehyde were obtained when using immobilized catalysts
IC4.1-IC4.6, as compared to their non-immobilized model counterparts (C2.1-C2.3) at similar
times. It was found that the immobilized catalysts could be used at ruthenium loadings as low as
0.05 mol %, compared to the model systems where 0.5 mol % ruthenium was required to give
favorable results. Complete conversion of 1-octene could be achieved at almost half the time
needed when using the model systems as catalyst precursors. The activity of the model systems
seems to increase with the increase in steric bulk around the metal center. These model and
immobilized systems were also found to cleave styrene affording benzaldehyde in almost
quantitative yield in some case (shorter reaction times). The systems, with the siloxane tether via the arene ring, were found to be less active for the
cleavage of 1-octene when compared to the above mentioned systems (siloxane tether attached to
the imine nitrogen). The immobilized systems IC4.7-IC4.12 performed well compared to their
model counterparts, but could not achieve the same conversions at the shorter reaction times as
were the case for IC4.1-IC4.6. This lower activity was ascribed to the decreased stability of
these systems in solution compared to the above mentioned systems with the tether attached to
the imine nitrogen. This was confirmed by monitoring the conversion of the complex (catalyst
precursor) to the active species in the absence of substrate (monitored by UV-Vis spectroscopy).
It was observed that model complex C3.1 could not be detected in solution after 1 hour,
compared to complex C2.2 which was detected in solution even after 24 hours.
Experiments were carried out where MCM-41 was added to a solution of model complex C2.2
under typical cleavage reaction conditions. A dramatic increase in the conversion was achieved
when compared to a reaction in the absence of MCM-41. An investigation into the effect of the
support material on the formation of the expected active species was carried out using UV-Vis
spectroscopy. The presence of the active species, RuO4, could be observed at shorter reaction
times in the presence of MCM-41. This suggested that the silica support facilitates the formation of the active species from the complex during the reaction, therefore resulting in an increased
activity. It was also observed that RuO4 is present in solution in reactions where the
immobilized catalyst systems are used after very short reaction times, compared to the prolonged
times required for this to occur as is the case for the model systems.
Model and immobilized catalysts, C2.1-C2.3 and IC4.1-IC4.6, were also applied as catalysts for
the transfer hydrogenation of various ketones. The immobilized systems could be recovered and
reused for three consecutive runs before the catalysts became inactive (transfer hydrogenation of
acetophenone). Moderate to good conversion were obtained using the immobilized systems, but
were found to be less active their model counterparts C2.1-C2.3. / AFRIKAANSE OPSOMMING: Die sintese van `n reeks siloksaan gefunksioneerde Ru(areen)Cl(N,N) komplekse, wat die sintese
van nuwe MCM-41 en SBA-15 geimmobiliseerede rutenium(II) katalisatore toelaat, word in
hierdie tesis beskryf. Twee ooglopend verskillende metodes is voorgestel om die suksesvolle
immobilisering van die siloksaan gefunksioneerde komplekse te bereik. Die kondensasie van die
siloksaan gefunksioneerde komplekse, C2.4-C2.6 (siloksaan ketting geheg aan die imien
stikstof) en C3.5-C3.7 (siloksaan ketting geheg aan die areen ligand), met die oppervlak silanol
groepe van die silika materiale MCM-41 en SBA-15, laat die sintese van geimmobiliseerde
katalisatore IC4.1-IC4.6 (siloksaan ketting geheg aan die imien stikstof) en IC4.7-IC4.12
(siloksaan ketting geheg aan die areen ligand) toe.
Model en siloksaan gefunksioneerde komplekse C2.6-C2.6 is berei deur die reaksie tussen Schiff
basis ligande, L2.1-L2.6, en die [Ru(p-simeen)2Cl2]2 dimeer. `n Tweede, nuwe benadering wat
die sintese van komplekse met die siloksaan ketting geheg aan die areen ligand behels, is ook
gevolg. Kationiese areen gefunksioneerde Ru(areen)Cl(N,N) komplekse, C3.1-C3.4, is berei
deur die N,N ligande rondom die metaal sentrum te wissel vanaf bipiridien tot `n reeks diimien
ligande met propiel of diisopropielfeniel substituente by die imien stikstof. Hierdie propanol
gefunksioneerde komplekse is met 3-(triëtoksiesiliel)propiel-isosianaat gereageer om sodoende
die uretaan gekoppelde siloksaan gefunksioneerde komplekse C3.5-C3.8 op te lewer. Al die komplekse is ten volle gekaraktariseer deur van FT-IR spektroskopie, KMR (1H and 13C)
spektroskopie, ESI-MS analise en mikroanalise gebruik te maak. In die geval van model
kompleks C3.1, is `n kristalstruktuurbepaling ook uitgevoer. Die heterogene katalisatore, IC4.1-
IC4.12, is gekaraktariseer deur poeier X-straaldiffraksie, skandeer- en transmissieelektronmikroskopie,
termogravimetriese analise (TGA), induktief gekoppelde plasma optiese
emissie spektroskopie (IKP-OES) en BET oppervlak analises, om net `n paar te noem. IKP-OES
het ons toegelaat om `n direkte vergelyking te tref tussen die model en geimmobiliseerde sisteme
tydens die katalise reaksies.
Model komplekse C2.1-C2.3 en C3.1-C3.3, sowel as hul geimmobiliseerde eweknieë IC4.1-
IC4.12, is vir die oksidatiewe splyting van alkene (1-okteen en stireen) getoets. Die
voorgestelde aktiewe spesie wat tydens hierdie reaksie gevorm word, RuO4, is bevestig deur van UV-Vis spektroskopie gebruik te maak. Oor die algemeen is dit gevind dat aldehied oorheersend
gevorm word by laer omsetting. Wanneer die reaksietyd verleng is, is daar gevind dat die
aldehied na die ooreenstemmende karboksielsuur omgeskakel is. Wanneer die geimmobiliseerde
katalisatore gebruik is tydens die oksidatiewe splitsing van 1-okteen, het die sisteme, met die
ketting geheg aan die imien stikstof, deurgangs beter as die model sisteme gevaar. Hoër
omskakelings van 1-okteen en hoë selektiwiteite vir heptaldehied is behaal wanneer die
geimobiliseerded katalisatore IC4.1-IC4.6 met die nie-geimmobiliseerde model sisteme (C2.1-
C2.3) vergelyk is by dieselfde reaksietye. Die geimobiliseerde sisteme kon by rutenium
beladings van so laag as 0.05 mol % gebruik word. Dit is in teenstelling met die model sisteme
waar 0.5 mol % rutenium nodig was om die reaksie suksesvol te laat plaasvind. Die totale
omskakeling van 1-okteen is bereik in die helfte van die tyd wat nodig was wanneer die model
sisteme gebruik is. Dit is gevind dat die aktiwiteit van die model sisteme toeneem met `n
toename in die steriese grootte van die ligand rondom die metaal. Beide die model en
geimmobilseerde sisteme kon ook gebruik word vir die oksidatiewe splyting van stireen.
Bensaldehied kon in kwantitiewe opbrengs gevorm word in sommige gevalle. `n Laer aktiwiteit vir die oksidatiewe splyting van 1-okteen is vir die sisteme waar die siloksaan
ketting aan die areen ligand geheg is, waargeneem. Hoewel die geimmobiliseerde sisteme
IC4.7-IC4.12 beter as hul model eweknieë gevaar het, kon die aktiwiteite wat met IC4.1-IC4.6
bereik is nie geewenaar word nie. Hierdie laer aktiwiteit is toegeskryf aan die verlaagde
stabiliteit van dié sisteme in oplossing in vergelyking met IC4.1-IC4.6 (ketting geheg aan die
imine stikstof). Die stabiliteit van beide sisteme is getoets deur die omskakeling van die model
komplekse (C2.2 en C3.1; katalise voorgangers) na die aktiewe spesie te monitor (UV-Vis
spektroskopie). Na 1 uur kon die model kompleks C3.1 nie meer in die oplossing waargeneem
word nie. In teenstelling kon model kompleks C2.2 nog selfs na 24 uur in die oplossing bespeur
word.
Om die rol van die silika materiale tydens die reaksie te ondersoek, is `n eksperiment uitgevoer
waar MCM-41 by `n oplossing van kompleks C2.2 gevoeg is. `n Toename in die omskakeling
van 1-okteen is waargeneem in vergelyking met `n reaksie waar geen silika teenwoordig was nie.
UV-Vis spektroskopie is gebruik om die invloed van die silika op die vorming van die aktiewe
spesie te ondersoek. In eksperimente waar MCM-41 teenwoordig was, kon die aktiewe spesie,
RuO4, by baie korter reaksietye waargeneem word. Dit wil blyk of die silika materiaal die vorming van die aktiewe spesie vanaf die kompleks aanhelp en sodoende `n toename in die
spoed van die reaksie bewerkstellig. RuO4 kon ook by baie korter reaksietye waargeneem word
wanneer die geimmobiliseerde sisteme gebruik is.
Beide model en geimmobiliseerde sisteme, C2.1-C2.3 en IC4.1-IC4.6, is getoets vir die oordrag
hidrogenering van verskilende ketone. Dit was moontlik om die geimmobiliseerde sisteme drie
keer te herwin en vir daaropvolgende reaksies te gebruik. Vir die geimmobiliseerde sisteme kon
egter slegs gemiddelde omskakelings verkryg word en het swakker gevaar as hul model
ekwivalente sisteme, C2.1-C2.3.
|
Page generated in 0.0598 seconds