• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Slovenská dôchodková reforma / Slovak pension reform

Lukačovský, Tomáš January 2010 (has links)
This essay inquires of retirement system in Slovakia. In the first theoretical part author brings the retirement system in, its evolution and character. Also inform about genesis of reform and introduce its legislative basic. In the second part of essay author analyses period of time when the government was changed twice. Every government set up the pension system according to its ideas. The main target of this essay is to recalculate that changes and point at real impact in form of deficit, public debt or in form of saver.
2

Skatter och ekonomiska beteenden : en studie i ekonomisk psykologi om främst skattefusk och sparande utifrån 1982 års skatteomläggning

Wahlund, Richard January 1991 (has links)
Vilken betydelse har inkomstskatter för ekonomiska beteenden? Hur påverkas ekonomiska beteenden av en skatteomläggning? Denna avhandling söker ge svar på båda dessa frågor. Den handlar främst om skattefusk och sparande. Den svenska inkomstbeskattningen ändras varje år. Ofta är det fråga om små ändringar. Ibland genomförs större ändringar – en skatteomläggning. En sådan genomfördes 1983-1985. I huvudsak innebar den sänkta marginalskatter och reducerade skattmässiga värden av avdrag. Skatteomläggningen har det uttalande syftet att stimulera sparande och arbete samt att bekämpa skattefusk, spekulation och inflation. Genom analyser av offentlig statistik och data från fyra intervjuundersökningar, genomförda 1982 - 1984, ger boken svar på mer specifika frågor som: Varför skattefuskar folk? Vilken roll spelar inkomstskatterna? Finns det olika typer av sparande som skiljer sig åt vad gäller sparbeteenden och reaktioner på sparstimulerande och andra ekonomiska åtgärder? Hur utvecklades inkomstskatterna, inkomsterna och det aggregerade hushållssparandet fram till och under 1982 års skatteomläggning? Hur utvecklades skattefusket, sparandet, andra ekonomiska beteenden och ekonomiska attityder under skatteomläggningens första hälft? Boken visar hur ekonomiska och psykologiska teorier och metoder kan kombineras för att besvara frågor som de ovan. I boken presenteras ett rikhaltigt såväl teoretisk som empiriskt material. Detta kan användas för att diskutera och bedöma tänkbara konsekvenser av kommande skatteomläggningar, andra ekonomisk-politiska åtgärder och åtgärder som t ex banker vidtar. Boken är av intresse både för praktiker och teoretiskt intresserade personer. / <p>Diss. Stockholm : Handelshögskolan, 1991</p>
3

Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van Rooy

Van Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical energy from a conventional linear Fresnel CSP plant without a storage application, costs the utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same amount of energy by means of a highly efficient supercritical coal-fired power station, taking carbon tax into consideration. This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive capital investment required per kW installed to construct such a plant along with the relatively low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a large-scale supercritical coal-fired power station, will be higher than that of a conventional supercritical coal-fired power station, but much less than that of a conventional CSP plant. The main aim of this study is to calculate and then compare the LCOE of a conventional supercritical coal-fired power station with that of such a station integrated with a linear Fresnel CST field. When the thermal energy generated in the receiver of a CST plant is converted into electrical energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power station, the total capital cost of the solar side of the integrated system will be reduced significantly, compared with the two stations operating independently of one another for common steam turbines, electrical generators and transformers, and transmission lines will be utilised for the integrated plants. The results obtained from the thermodynamic models indicate that if an additional heat exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered, one can expect to produce approximately 4,6 GWh more electricity to the national grid annually than with a normal coal-fired station. This increase in net electricity output is mainly due to the compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is also found that the total annual thermal energy input required from burning pulverised coal is reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce approximately R8,188m in additional revenue annually from the trade of renewable energy certificates, while the reduced coal consumption will result in an annual fuel saving of about R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced by R1,856m, and by supplying additional energy to the national grid, an additional income of approximately R3,037m will be due to the power station. The annual operating and maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the region of R9,71m. The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be 0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a normal supercritical coal-fired power station. If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale components of a supercritical coal-fired power station, rather than to generate electricity from a conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
4

Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van Rooy

Van Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical energy from a conventional linear Fresnel CSP plant without a storage application, costs the utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same amount of energy by means of a highly efficient supercritical coal-fired power station, taking carbon tax into consideration. This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive capital investment required per kW installed to construct such a plant along with the relatively low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a large-scale supercritical coal-fired power station, will be higher than that of a conventional supercritical coal-fired power station, but much less than that of a conventional CSP plant. The main aim of this study is to calculate and then compare the LCOE of a conventional supercritical coal-fired power station with that of such a station integrated with a linear Fresnel CST field. When the thermal energy generated in the receiver of a CST plant is converted into electrical energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power station, the total capital cost of the solar side of the integrated system will be reduced significantly, compared with the two stations operating independently of one another for common steam turbines, electrical generators and transformers, and transmission lines will be utilised for the integrated plants. The results obtained from the thermodynamic models indicate that if an additional heat exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered, one can expect to produce approximately 4,6 GWh more electricity to the national grid annually than with a normal coal-fired station. This increase in net electricity output is mainly due to the compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is also found that the total annual thermal energy input required from burning pulverised coal is reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce approximately R8,188m in additional revenue annually from the trade of renewable energy certificates, while the reduced coal consumption will result in an annual fuel saving of about R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced by R1,856m, and by supplying additional energy to the national grid, an additional income of approximately R3,037m will be due to the power station. The annual operating and maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the region of R9,71m. The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be 0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a normal supercritical coal-fired power station. If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale components of a supercritical coal-fired power station, rather than to generate electricity from a conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0491 seconds