• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimering av Savoniusturbinens effektivitet i marina strömmar med hjälp av CFD-analys av flödesriktare / Optimization of Savonius turbine efficiency in marine currents using CFD-analysis of flow directors

Hammar, Leonard, Kovaleff Malmenstedt, Jacob January 2022 (has links)
The Savonius turbine is a self-starting vertical axis turbine that has a few advantages compared to other vertical axis turbines such as lower cost, lower noise and is relatively easy to manufacture. This turbine does however have a lower efficiency and is therefore less used in the electricity production than other turbines.  This thesis is trying to tackle this problem with the use of 2D CFD-simulations of flow directors to modify the flow through the turbine to increase the efficiency. The focus during this project is to use this turbine as a Marine Current Turbine (MCT) in unidirectional flows. The turbine was based on a turbine design from a previous study at Uppsala University. The design of the flow directors was modeled with the intention to increase the available pressure drop from the front to the back of the turbine and therefore increase the velocity through the turbine. The flow directors comprised of two arcs on each side of the turbine so that they resembled a Venturi-tunnel, with a funnel in the front and a diffuser at the back. A validation of the domain dimensions and mesh-size was conducted and after this the different parameters of the flow directors were varied one at a time with the best value of a given parameter being kept for the latter simulations. At the end, the rotational velocity of the turbine was varied to find how sensitive the power output was based on this factor. This study concluded that an increase in the power coefficient of about 3,2 times was achievable compared to the same turbine in free flow. However, this needs to be further investigated and validated in real world tests as this study was conducted using 2D-simulations and other effects may influence the results in the real world. / <p>This project was conducted within Stand up for wind and Stand up for energy.</p>

Page generated in 0.0479 seconds