• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 38
  • 17
  • 16
  • 11
  • 9
  • 8
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 374
  • 147
  • 131
  • 68
  • 47
  • 42
  • 40
  • 37
  • 35
  • 34
  • 30
  • 29
  • 28
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Structure-activity Relationships for Development of Neurokinin-3 Receptor Antagonists with Reduced Environmental Impact / 環境負荷低減型NK3受容体拮抗剤の創製に向けた構造活性相関研究

Yamamoto, Koki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第21716号 / 薬科博第107号 / 新制||薬科||11(附属図書館) / 京都大学大学院薬学研究科医薬創成情報科学専攻 / (主査)教授 大野 浩章, 教授 高須 清誠, 教授 竹本 佳司 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
172

The Efficacy of a Scaffold-free Bio 3D Conduit Developed from Autologous Dermal Fibroblasts on Peripheral Nerve Regeneration in a Canine Ulnar Nerve Injury Model: A Preclinical Proof-of-Concept Study / イヌ尺骨神経損傷モデルにおける、自家皮膚線維芽細胞から作製したscaffold-free Bio 3D conduitの末梢神経再生に対する有効性:前臨床概念実証研究

Mitsuzawa, Sadaki 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23056号 / 医博第4683号 / 新制||医||1048(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 戸口田 淳也, 教授 森本 尚樹, 教授 伊佐 正 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
173

Identifying and Reducing Variability, Improving Scaffold Morphology, and Investigating Alternative Materials for the Blood Vessel Mimic Lab Electrospinning Process

Dowey, Evan M 01 September 2017 (has links)
The work of the Cal Poly Tissue Engineering Lab is primarily focused on the fabrication, characterization, and improvement of “Blood Vessel Mimics” (BVMs), tissue engineered constructs used to evaluate cellular response to vascular medical devices. Currently, cells are grown onto fibrous, porous tubes made using an in-house electrospinning process from PLGA, a biocompatible co-polymer. The adhesion and proliferation of cells in a BVM is reliant on the micro-scale structure of the PLGA scaffold, and as such it is of great importance for the electrospinning process to consistently produce scaffolds of similar morphologies. Additionally, it has been shown that cell proliferation increases with scaffolds of smaller fibers and pores than the current electrospinning protocol can produce. Finally, the Tissue Engineering Lab has interest in testing devices in more tortuous BVM bioreactor designs, however the use of relatively rigid PLGA scaffolds has severely limited the ability to construct more complicated vessel geometries. The overall goal of this thesis was to improve fabrication and characterization of electrospun polymer scaffolds for BVM use. The specific aims of this thesis were to: 1) Improve scaffold characterization by comparing two techniques for fiber diameter measurement and implementing a technique for pore area measurement. 2) Reduce scaffold fiber diameter and pore area by investigating humidity and solvent composition electrospinning parameters. 3) Reduce process variability by developing a more specific electrospinning protocol. 4) Improve scaffold consistency and use by understanding and reducing PLGA scaffold shrinkage. 5) Identify and evaluate more flexible polymers as potential alternatives for electrospun BVM scaffolds. In order to accomplish these aims, first, several BVM and outside literature images were taken and evaluated with current and prospective fiber diameter techniques, and with 2 prospective pore area techniques to characterize accuracy and consistency of each method. It was found that the prospective fiber diameter measurement technique was not superior to the current method. The techniques developed for pore area measurement were found to produce results that differed significantly from each other and from the published value for a given image. Next, changes to environmental and solution composition parameters were made with the hopes of reducing fiber diameter and pore area of electrospun PLGA scaffolds. Changes in relative humidity did not appear to significantly affect scaffold fiber diameter while changes to solvent composition, specifically the use of acetone, resulted in fibers significantly smaller than those regularly achieved in the BVM lab. Next, several sources of variability in the electrospinning protocol were identified and subsequently altered to improve consistency and usability. Specifically, this included redefining the precision with which PLGA mass was measured, repositioning electrical equipment to reduce the effect of stray electrostatic forces on the polymer solution jet, attempting to control the temperature and humidity inside the electrospinning enclosure, and improving the ease with which scaffolds are removed from their mandrels through alternative mandrel surface treatments. In addition to overall process variability, the issue of scaffold shrinkage during BVM use was investigated and two possible treatments, exposure to either ethanol or elevated temperatures, were proposed based on previous electrospinning literature results. Each was tested for their effectiveness in mitigating shrinkage through exposure to BVM setup-mimicking conditions. It was found that both treatments reduced scaffold shrinkage compared to control samples when exposed to BVM setup-mimicking conditions. Finally, 3 flexible polymers were selected and electrospun to compare against typical PLGA results and to conduct a kink radius test as a metric for measuring flexibility as it pertains to the proposed BVM lab application. It was concluded that two types of thermoplastic polyurethane (tPU) were not acceptable electrospinning materials for use in the BVM lab. Additionally, while polycaprolactone (PCL) could be successfully electrospun it could not undergo the amount bending required for more tortuous BVM bioreactor designs without kinking. Overall, the work in this thesis provided insight into multiple scaffold characterization techniques, reduced overall electrospinning variability in the fabrication and use of PLGA scaffolds, and defined processing parameters that have been shown to yield scaffolds with smaller morphological features than all prior Tissue Engineering Lab work. By creating better, more effective scaffolds, researchers in the Tissue Engineering Lab can more accurately mimic the structure and properties of native blood vessels; this, in turn, will result in BVM cell responses that more closely resemble that of native tissue. Creating consistent and appropriate BVMs will then lead to impactful contributions to the existing body of tissue engineering research and to better preclinical device testing.
174

Vliv biokeramických aditiv na morfologii, fyzikální a biologické vlastnosti kolagenových nosičů pro tkáňové inženýrství kostí / Effect of bioceramic additives on morphology, physical and biological properties of collagen scaffolds for bone tissue engineering

Klieštiková, Nikola January 2018 (has links)
Diplomová práce se zabývá přípravou trojrozměrných porézních kolagenových kompozitních nosičů pro tkáňové inženýrství kostí a studiem vlivu přídavku biokeramických částic na morfologické, biomechanické a biologické vlastnosti. Teoretická část popisuje biomateriály a biokeramické částice používané pro nosiče v tkáňové inženýrství kostí a jejich metody výroby. Pokud jde o experimentální část, byly vzorky připraveny metodou lyofilizace. Testovaným materiálem byl kolagen typu I z prasečího a hovězího zdroje, který byl kombinován s hydroxyapatitem a směsí -fosforečnanu vápenatého s -fosforečnanem vápenatým v poměrech 1 : 1, 1 : 2 a 2 : 1. Byl hodnocen vliv rozpustnosti a velikosti částic na morfologii, mechaniku a biokompatibilitu nosičů. Přidání biokeramických částic změnilo morfologii vzorků. Velikost pórů se snížila, zatímco pórovitost byla ve všech testovaných vzorcích téměř stejná. Biokeramické částice také způsobily, že kolagenová matrice nosičů byla méně hydrofilní, a navíc dokázaly stabilizovat nosiče proti působení enzymatické degradace. Biomechanické vlastnosti vzorků byly testovány v suchém i mokrém stavu. V suchém stavu dosáhl nejvyšší pevnosti v tlaku čistý bovinní kolagenový nosič, naopak v hydratovaném stavu, dosáhly nejvyšší hodnoty vzorky obsahující biokeramické částice. Žádný ze vzorků nebyl cytotoxický a nejvhodnější prostředí pro buněčnou adhezi a proliferaci bylo v čistém bovinním kolagenovém nosiči a také v kolagenovém kompozitním nosiči s poměrem HAp : -TCP : 1 : 1.
175

Form and Functionality of Additively Manufactured Parts with Internal Structure

Ahsan, AMM Nazmul January 2019 (has links)
The tool-less additive manufacturing (AM) or 3D printing processes (3DP) use incremental consolidation of feed-stock materials to construct part. The layer by layer AM processes can achieve spatial material distribution and desired microstructure pattern with high resolution. This unique characteristics of AM can bring custom-made form and tailored functionality within the same object. However, incorporating form and functionality has their own challenge in both design and manufacturing domain. This research focuses on designing manufacturable topology by marrying form and functionality in additively manufactured part using infill structure. To realize the goal, this thesis presents a systematic design framework that focuses on reducing the gap between design and manufacturing of complex architecture. The objective is to develop a design methodology of lattice infill and thin shell structure suitable for additive manufacturing processes. Particularly, custom algorithmic approaches have been developed to adapt the existing porous structural patterns for both interior and exterior of objects considering application specific functionality requirements. The object segmentation and shell perforation methodology proposed in this work ensures manufacturability of large scale thin shell or hollowed objects and incorporates tailored part functionality. Furthermore, a computational design framework developed for tissue scaffold structures incorporates the actual structural heterogeneity of natural bones obtained from their medical images to facilitate the tissue regeneration process. The manufacturability is considered in the design process and the performances are measured after their fabrication. Thus, the present thesis demonstrates how the form of porous structures can be adapted to mingle with functionality requirements of the application as well as fabrication constraints. Also, this work bridges the design framework (virtual) and the manufacturing platform (realization) through intelligent data management which facilitates smooth transition of information between the two ends. / National Science Foundation #OIA-1355466 / National Science Foundation-DMR- MRI #1625704 / National Institute of Health - COBRE: CDTSPC; Grant # P20GM109024 / US-DOT # 693JK31850009CAAP / Dept. of Commerce Research-ND, Award # 17-08-G-191 / CSMS, NDEPSCoR / NDSU Grand Challenge and Development Foundation
176

Vliv biologicky aktivních látek na strukturu a vlastnosti kolagenových substrátů / The effect of biologicaly active substances on the structure and properties of collagenous substrates

Muchová, Johana January 2016 (has links)
Diplomová práce se zabývá přípravou 3D porézních kolagenových skafoldů metodou lyofilizace a jejich modifikací bioaktivními látkami. K modifikaci byly použity přírodní polysacharidy – chitosan, vápenatá oxidovaná celulóza a chitin/chitosan-glukanový komplex. Mechanické vlastnosti skafoldů byly upraveny síťováním pomocí karbodiimidů. Růstové faktory byly dodány formou destičkového lyzátu. Byl zkoumán vliv biologicky aktivních aditiv, siťovacího činidla a obohacení růstovými faktory na vlastnosti připravených skaffoldů a jejich bioaktivitu v tkáních živých organismů. Konkrétně byly studovány morfologické vlastnosti, struktura, porozita, botnání, stabilita, chemické složení, teplota denaturace a biologické vlastnosti. K charakterizaci byly použity metody rastrovací elektronová mikroskopie, infračervená spektroskopie, diferenční kompenzační kalorimetrie a konfokální mikroskop. Připravené kolagenové substráty obohaceny bioaktivním aditivem a destičkovým lyzátem mohou být využity v biomedicíně jako skafoldy pro růst buněk v systémech s nízkou mechanickou zátěží.
177

Micropatterned Fibrin Hydrogels for Increased Cardiomyocyte Alignment

English, Elizabeth J 13 November 2019 (has links)
Cardiovascular disease is the leading cause of death in the US, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI). After a MI, hypoxic ventricular myocardial tissue dies, resulting in the deposition of non-contractile scar tissue and remodeling of the ventricle, leading to decreased cardiac output and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplant. As donor hearts are in short supply, an alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials in effort to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. By incorporating the use of a clinically relevant cell type and by matching native architecture, we propose the use of a highly aligned fibrin scaffold to support the maturation of human induced pluripotent stem cell cardiomyocytes (hiPS-CM) for use as a cell-populated cardiac patch. By micropatterning fibrin hydrogels, hiPS-CM seeded on the surface of this scaffold become highly aligned, which is crucial for increased contractile output. Our lab previously developed a composite fibrin hydrogel and microthread cardiac patch matching mechanical properties of native myocardium. By micropatterning fibrin hydrogel alone, we were able to match cellular alignment of hiPS-CM to that of native myocardium. hiPS-CMs seeded on this surface were found to express distinct sarcomere alignment and circumferential connexin-43 staining at 14 days of culture as well as cellular elongation, which are necessary for mature contractile properties. Constructs were also cultured under electrical stimulation to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of topographical cues on fibrin scaffolds may be a promising strategy for creating engineered myocardial tissue to repair damaged myocardium.
178

Uv and spontaneously cured polyethylene glycol-based hydrogels for soft and hard tissue scaffolds / Spontan och UV-härdande Poly(etylen glycol) baserade hydrogeter för mjuk- och hårda vävnads substrat

Farbod, Kambiz January 2011 (has links)
UV-curing is one of the most commonly used methods for producing hydrogels for soft and hard tissue scaffolds. Spontaneous curing is an alternative method which possesses some advantages in comparison to the conventional UV-curing methods; for example, in situ crosslinking and excluding initiators. The main objective of this study was to investigate promising materials for producing UV and spontaneously cured hydrogels, and subsequently to perform a comparison between the produced hydrogels with regard to their different mechanical and physical properties.Seventeen different hydrogels including five UV-cured and twelve spontaneously cured hydrogels were produced by applying thiol-ene chemistry and by varying precursor materials. Hydrogel systems including di- and tetra- functional PEGs of different lengths (2 kDa and 6 kDa) and two different thiol-crosslinkers (ETTMP 1300 Da and DTT) were subsequently characterized and evaluated. The evaluation tests applied in this study were Raman spectroscopy, weight and volumetric swelling test, leaching test, tensile test, and rheology test. Between all the systems, tetra-acrylated PEG (6 kDa) BisMPA was found to be the most promising system. The pH level of the applied solvent (PBS) for spontaneously cured hydrogels was varied from the physiologically relevant level of 7.4 to 7.0 and 7.8 in order to investigate the dependency of physical and mechanical properties of the hydrogels to this parameter.Spontaneous curing of tetra-acrylated PEG (6 kDa) BisMPA with ETTMP 1300 Da as the thiol-crosslinker, was accomplished within 3½ min in PBS with a pH level of 7.4; and it came out to be the fastest spontaneously cured system between all the tested hydrogels. Increasing the PBS pH level resulted in a faster curing process (accomplished in 1½ min). Spontaneously cured hydrogels generally showed decreased mechanical properties, but improved swelling behavior compared to UV-cured hydrogels. Nevertheless, the discussed system still possessed 50% of the elastic modulus in the tensile test in comparison to the UV-cured state; and showed the highest elastic modulus in comparison to other spontaneously cured systems. The storage modulus of the mentioned hydrogel in the spontaneously cured state was very close to the same parameter in the UV-cured hydrogel based on the same precursors. It also possessed the highest storage modulus between all the spontaneously cured hydrogels. Although the obtained swelling properties of this system were not the highest between all the tested hydrogels, these parameters were still in an acceptable range as for a hydrogel proposed for tissue scaffold application (swelling ratio: 9.72, water content: 89.71%, volumetric swelling ratio: 9.05). Furthermore, the system had the lowest weight loss ratio between all the acrylate-based hydrogels (including both UV and spontaneously cured systems), which along with the Raman spectroscopy results shows the high crosslinking efficiency of the system.
179

Integration dermaler Fibroblasten in PLGA-Scaffolds

Friedrich, Nadja 16 April 2013 (has links)
Die Wundheilung stellt einen physiologischen Vorgang zur Regeneration zerstörten Gewebes dar. Der reibungslose Ablauf der Heilung wird durch ein komplexes Zusammenspiel von Zellen und extrazellulären Komponenten gewährleistet. Durch vielfältige Faktoren kann dieser fein abgestimmte Prozess zum Erliegen kommen, so dass eine chronische Wundheilungsstörung resultiert. Trotz zahlreicher Behandlungsmöglichkeiten chronischer Wunden bleibt jedoch die erfolgreiche Heilung oftmals aus. Die Anwendung von biodegradierbaren Materialen (Biomaterialien) in der Wundheilung wurde in den vergangenen Jahren intensiv erforscht und teilweise erfolgreich am Patienten eingesetzt. An dem Ziel, ein Biomaterial herzustellen, welches alle funktionellen und strukturellen Fähigkeiten gesunder menschlicher Haut mit sich bringt, wird jedoch nach wie vor gearbeitet. In verschiedenen Studien konnte die gute Verträglichkeit und Biodegradierbarkeit des Biopolymers PLGA, bestehend aus Lactat und Glycolsäure, bereits gezeigt werden. In der vorliegenden Dissertation wurden dreidimensionale (3D)-Gerüste (Scaffolds) aus PLGA hinsichtlich ihrer Wechselwirkungen mit humanen dermalen Fibroblasten (Fb) untersucht. Dermale Fb leisten einen entscheidenden Beitrag zur erfolgreichen Wundheilung, da sie unter der Einwirkung diverser Wachstumsfaktoren zur Migration ins Wundgebiet sowie zur Neusynthese und Reorganisation extrazellulärer Matrix (ECM) befähigt sind. In den Untersuchungen wurden grundlegende Kenntnisse zum Verhalten der Zellen bezüglich Proliferation sowie Synthese nativer ECM in den PLGA-Scaffolds gewonnen und das Migrationsverhalten der Fb in das Biomaterial untersucht. Dabei zeigte sich, dass dermale Fb in den PLGA-Scaffolds nicht nur proliferieren sondern auch einen ausgeprägten Matrixstoffwechsel aufweisen. Sie sind in der Lage, Kollagen und Hyaluronsäure, wichtige Bestandteile der ECM, abzulagern. Zudem konnte mit Hilfe der Arbeit der Einfluss von Wachstumsfaktoren sowohl auf relevante ECM-Komponenten im 3D-Kultursystem als auch auf das Migrationsverhalten der Fb in das Biomaterial verdeutlicht werden. Aus den Ergebnissen geht hervor, dass 3D-PLGA-Scaffolds geeignete Substrate zur Kultivierung dermaler Fb darstellen. Die zukünftig geplante Weiterentwicklung und Funktionalisierung dieses Biopolymers für den Einsatz in der Wundheilung scheint somit viel versprechend.
180

Bioceramic Materials for Advanced Medical Applications / Bioceramic Materials for Advanced Medical Applications

Novotná, Lenka January 2015 (has links)
Cílem disertační práce bylo připravit trojrozměrné biokeramické podpůrné systémy („skafoldy“), které by v budoucnu mohly pomoci při rekonstrukci a regeneraci poškozených kostních tkání. Porézní keramické pěny byly připraveny dvěma způsoby – replikační technikou a polymerizací in situ. Co se složení týče, byly studovány keramické materiály zejména na bázi oxidu hlinitého, zirkoničitého a kalcium fosfátů. Byl studován jednak vliv procesních parametrů jako je složení suspenzí a jejich viskozit, dále pak vliv tepelného zpracování na strukturu a výsledné vlastnosti připravených materiálů. U slinutých pěn byla pomocí rastrovací elektronové mikroskopie hodnocena zejména morfologie – velikost pórů, jejich propojenost a celková porozita, charakterizace mikrostruktury nebyla opomenuta. Dále bylo stanoveno fázové složení a pevnost v tlaku. Z biologických vlastností byla testována a diskutována bioaktivita a cytotoxicita materiálů. Disertační práce je členěna do několika částí. V literární rešerši je popsána stavba a vlastnosti kosti, požadavky kladené na kostní náhrady, výhody a nevýhody současně používaných materiálů a způsoby přípravy keramických pěn. Následuje experimentální část, kde byly nejprve studovány pěny připravené replikační technikou. Všechny takto vyrobené pěny měly propojené póry o velikostech 300 až 2000 m, celková porozita se pohybovala v rozmezí 50 – 99 %. Pevnost pěn na bázi kalcium fosfátů – 0,3 MPa (při celkové porozitě 80%) byla nedostatečná pro kostní náhrady, kde je požadována pevnost větší než 2 MPa. Kalcium fosfátové keramiky byly tedy zpevněny buďto inertním jádrem na bázi oxidu hlinitého nebo ATZ (oxidem zirkoničitým zhouževnatělým oxidem hlinitým). Dále byl přípraven částicový kompozit, ve kterým byl hydroxyapatit pojený oxidem křemičitým. Pevnost pěn se podařilo zvýšit až na více než 20 MPa. V poslední kapitole experimentální části byly studovány keramické pěny pěněné in situ, kde byly póry vytvářeny oxidem uhličitým unikajícím během reakce mezi diisokyanátem a polyalkoholem. Po vypálení polymerního pojiva měly pěny propojené póry o průměrné velikosti 80 až 550 m. Celková porozita se pohybovala v rozmezí 76 – 99%. Výhodou oproti replikační technice byly plné trámečky bez velké středové dutiny vznikající vypálením polymerní předlohy. Žádný ze studovaných materiálů nebyl pro buňky toxický, navíc všechny studované pěny vykazovaly bioaktivní chování. Z hlediska kostního tkáňového inženýrství se jako nejslibnější jeví kompozitní materiál zpevněný oxidem křemičitým.

Page generated in 0.0542 seconds