1 |
A study on productivity enhancement in high-speed, high-precision micromilling processesSodemann, Angela Ann 16 November 2009 (has links)
This thesis presents a study into the enhancement of productivity in micromilling processes by considering a fundamental treatment of tool path trajectory generation techniques and process optimization strategies that account for the impact of scale effects present in high-speed, high-precision micromachining operations. Micromilling is increasingly applied to the production of a wide variety of micro components, due to its high precision and flexibility. However, the productivity of micromilling is limited by the low feedrates necessitated by the inherent high precision and small feature size. In this study, several scale effects present at the microscale are identified, in particular the increase of the ratio of tool size to feature size, and the corresponding impact on trajectory generation and process optimization is investigated. The scale effects are shown to cause increased geometric error when the standard method of VF-NURBS is applied to microscale feedrate optimization. The method of Enhanced Variable-Feedrate NURBS (EVF-NURBS) is proposed and shown to successfully compensate for the scale effects leading to reduced geometric error. A key contribution of this study is the construction and experimental validation of the Variable-Feedrate Intelligent Segmentation (VFIS) method for increased feedrates and improved stability. The VFIS method provides a cutting time reduction of more than 50% in some cases, while effectively constraining geometric error. Two tool size optimization schemes are presented for maximizing productivity and minimizing geometric error while accounting for dynamic effects uniquely present at the microscale. Finally, the development of a low-cost, high-precision micro-mesoscale machining center (mMC) is presented.
|
2 |
Modeling the Effects of Three-Dimensional Pore Geometry on Gas Hydrate Phase StabilityIrizarry, Julia 18 August 2015 (has links)
Porous media affect hydrate stability by forcing hydrate-liquid interfaces to form high curvature geometries and by forcing the molecules of the hydrate, liquid, and sedimentary particles that compose the medium to interact where they are in close proximity. To evaluate these effects we first create synthetic spherical packings to approximate pore space geometry. We use the synthetic pore space to calculate the perturbation to the chemical potential caused by the geometrical constraints. Our model predictions agree with published data for ice-water and water-vapor systems. When particles are well-approximated as spheres, our model fits the data with R-squared values that range between about 80% to over 99%. However, our model needs to be improved for porous media that contain a significant fraction of non-equant particles such as clay. Lastly, we demonstrate how our model can be used in predictions for the evolution of hydrate saturation.
This thesis includes unpublished co-authored material.
|
3 |
The evaluation of accounting-based valuation models in the UKShen, Yun January 2010 (has links)
This study provides two empirical studies in market-based accounting research. One study focuses on using out-of-sample valuation errors to evaluate various estimation approaches for firm-valuation models. The second empirical study uses portfolio analysis to evaluate an empirical accounting-based firm valuation model developed in the UK context.The first study uses out-of-sample valuation errors as an alternative metric capturing the effectiveness of various estimation approaches in generating reliable estimates of coefficients in accounting-based valuation models and, accordingly, less valuation bias and higher valuation accuracy. Valuation bias is expressed as the mean proportional valuation error, where estimated market value less the actually observed market value divided by the actual market value is the proportional valuation error, and valuation accuracy is measured by both the mean absolute and the mean squared proportional valuation error. We find that deflating the full equation including the constant term of the undeflated model and, hence, estimating without a constant term in the deflated model provides less bias and more accurate value estimates relative to including a constant term in the regression equation. Also estimating the valuation model on high- and low-intangible asset firms separately, instead of pooling the full sample for estimation, provides better performance in all cases. As expected, the results suggest that an extended model including the main accounting variables found to be associated with market value in the UK is better specified than a benchmark model, widely adopted in prior research, where market value is regressed on book value and earnings alone. Inclusion of 'other information' also seems to improve the performance of the models. However, there is no clear evidence that one particular deflator out of the five we investigate outperforms the others, although book value and opening and closing market value appear to generally perform better than sales and number of shares.The second empirical study tests for the existence of a 'mispricing' effect associated with accounting-based valuation models in the UK. It investigates a specific firm valuation model where market value is expressed as a linear combination of book value, earnings, research and development expenditures, dividends, capital contributions, capital expenditures and other information. All these accounting variables have been found value-relevant in prior studies in the UK. Firms are ranked by in-sample proportional valuation errors. Results show that although firms in the higher rank deciles tend to have higher abnormal returns than firms in the lower rank deciles, the difference between the two extreme portfolios (or the hedge returns) is statistically insignificant. As a consequence, accounting-based valuation models do not seem to provide superior estimates of intrinsic value to market values. We can conclude that the UK stock market is semi-strong form efficient, in the sense that it does not appear to be possible to generate positive abnormal returns based upon publicly available accounting information embedded in the valuation models studied.
|
4 |
AN ANALYSIS OF THE SPATIAL SCALE EFFECTS ON LANDSCAPE PATTERN METRICS IN A DEFORESTED AREA OF RONDONIA, BRAZILHAO, YONGPING January 2003 (has links)
No description available.
|
5 |
Full-Scale-Lateral-Load Test of a 1.2 m Diameter Drilled Shaft in SandMcCall, Amy Jean Taylor 25 March 2006 (has links)
The soil-structure interaction models associated with laterally loaded deep foundations have typically been based on load tests involving relatively small diameter foundations. The lateral soil resistance for larger diameter foundations has been assumed to increase linearly with diameter; however, few, if any load tests have been performed to confirm this relationship. To better understand the lateral resistance of large diameter deep foundations in sand, a series of full scale, cyclic, lateral load tests were performed on two 1.2 m diameter drilled shafts and a 0.324 m diameter steel pipe pile in sand. Although the tests involve two different foundation types, the upper 2.4 m of the profile, which provides the majority of the lateral resistance, consists of sand compacted around both foundation types. Therefore, these test results make it possible to evaluate the effect of foundation diameter on lateral soil resistance. The drilled shafts were first loaded in one direction by reacting against a fifteen-pile group. Subsequently a load test was performed in the opposite direction by reacting against a 9-pile group. The soil profile below the 2.4 m-thick layer of compacted sand consisted of interbedded layers of sand and fine-grained soil. For the drilled shaft load tests, pile head deflection and applied load were measured by string potentiometers and load cells, respectively. Tilt was also measured as a function of depth with an inclinometer which was then used to calculate deflection and bending moment as a function of depth. For the pipe pile, deflection and applied load were also measured; however, bending moment was computed based on strain gauges readings along the length of the pile. The lateral response of the drilled shafts and pipe pile were modeled using the computer programs LPILE (Reese et al., 2000), SWM6.0 (Ashour et al., 2002), and FB-MultiPier Version 4.06 (Hoit et al., 2000). Comparisons were made between the measured and computed load-deflection curves as well as bending moment versus depth curves. Soil parameters in the computer programs were iteratively adjusted until a good match between measured and computed response of the 0.324 m pipe pile was obtained. This refined soil profile was then used to model the drilled shaft response. User-defined p-multipliers were selected to match the measured results with the calculated results. On average very good agreement was obtained between measured and computed response without resorting to p-multipliers greater than 1.0. These results suggest that a linear increase in lateral resistance with foundation diameter is appropriate. LPILE typically produced the best agreement with measured response although the other programs usually gave reasonable results as well. Cyclic loading generally reduced the lateral resistance of the drilled shafts and pile foundation by about 20%.
|
6 |
Size-Scale Effects of Nonlinear Weir HydraulicsYoung, Nathan L. 01 May 2018 (has links)
Experimental physical model studies of hydraulic structures are often conducted to replicate flow behavior that may occur at the prototype scale. Geometric similitude is most often maintained between the prototype and model when studying reservoir and open channel hydraulic structures to account for the dominant gravity and inertia forces while other fluid forces (e.g., viscosity,surface tension) are assumed negligible. However, as model size and/or upstream head decreases, other fluid forces can exceed the negligible level and influence model flow behavior. This phenomenon is referred to as size-scale effects and is one potential origin of error in predicting the prototype behavior through testing geometrically similar models.
To extend the existing research of size-scale effects on nonlinear weirs half-and quarter-round trapezoidal labyrinth weirs and piano key weirs were fabricated at length ratios of 1, 2, 3, 6, and 12. The largest weir model for each weir type (i.e., a weir height of 36 in for labyrinth weir models and a weir height of 33 in for piano key weir models) served as the corresponding prototype.Weir models were hydraulically tested to assess differences among head-discharge relationships and flow behavior.
Limiting criteria were recommended to avoid size-scale effects depending on the weir type and model size. The results of this study will help hydraulic modelers determine what limiting criteria should be met to avoid size-scale effects.
|
7 |
Extremely Large Segmented Mirrors: Dynamics, Control and Scale EffectsBastaits, Renaud R. P. S. 11 June 2010 (has links)
All future Extremely Large Telescopes (ELTs) will be segmented. However, as their size grows, they become increasingly sensitive to external disturbances, such as gravity, wind and temperature gradients and to internal vibration sources. Maintaining their optical quality will rely more and more on active control means. This thesis studies active optics of segmented primary mirrors, which aims at stabilizing the shape and ensuring the continuity of the surface formed by the segments in the face of external disturbances.
The modelling and the control strategy for active optics of segmented mirrors are examined. The model has a moderate size due to the separation of the quasi-static behavior of the mirror (primary response) from the dynamic response (secondary, or residual response). The control strategy considers explicitly the primary response of the telescope through a singular value controller. The control-structure interaction is addressed with the general robustness theory of multivariable feedback systems, where the secondary response is considered as uncertainty.
Scaling laws allowing the extrapolation of the results obtained with existing 10m telescopes to future ELTs and even future larger telescopes are addressed and the most relevant parameters are highlighted. The study is illustrated with a set of examples of increasing sizes, up to 200 segments. This numerical study confirms that scaling laws, originally developed with simple analytical models, can be used in confidence in the preliminary design of large segmented telescopes.
|
8 |
Quantitative Characterization of Natural Rock Discontinuity Roughness In-situ and in the LaboratoryTatone, Bryan Stanley Anthony 16 February 2010 (has links)
The surface roughness of unfilled rock discontinuities has a major influence on the hydro-mechanical behaviour of discontinuous rock masses. Although it is widely recognized that surface roughness is comprised of large-scale (waviness) and small-scale (unevenness) components, most investigations of surface roughness have been restricted to small fracture
surfaces (<1m2). Hence, the large-scale components of roughness are often neglected.
Furthermore, these investigations typically define roughness using two-dimensional profiles rather than three-dimensional surfaces, which can lead to biased estimates of roughness.
These limitations have led to some contradictory findings regarding roughness scale effects. This thesis aims to resolve some of these issues. The main findings indicate that
discontinuity roughness increases as a function of the sampling window size contrary to what is commonly assumed. More importantly, it is shown that the estimated roughness significantly decreases as the resolution of surface measurements decrease, which could lead to the under estimations of roughness and, consequently, discontinuity shear strength.
|
9 |
Quantitative Characterization of Natural Rock Discontinuity Roughness In-situ and in the LaboratoryTatone, Bryan Stanley Anthony 16 February 2010 (has links)
The surface roughness of unfilled rock discontinuities has a major influence on the hydro-mechanical behaviour of discontinuous rock masses. Although it is widely recognized that surface roughness is comprised of large-scale (waviness) and small-scale (unevenness) components, most investigations of surface roughness have been restricted to small fracture
surfaces (<1m2). Hence, the large-scale components of roughness are often neglected.
Furthermore, these investigations typically define roughness using two-dimensional profiles rather than three-dimensional surfaces, which can lead to biased estimates of roughness.
These limitations have led to some contradictory findings regarding roughness scale effects. This thesis aims to resolve some of these issues. The main findings indicate that
discontinuity roughness increases as a function of the sampling window size contrary to what is commonly assumed. More importantly, it is shown that the estimated roughness significantly decreases as the resolution of surface measurements decrease, which could lead to the under estimations of roughness and, consequently, discontinuity shear strength.
|
10 |
Characterization of the gas and liquid transport rates and H2SO4 concentration and distribution within an above ground, commercial scale sulphur block2013 July 1900 (has links)
Excess global elemental sulphur (So) production has resulted in a decrease in its price. As a result, many companies, such as Syncrude Canada Ltd., have resorted to above ground storage alternatives. Geochemical reactions in these above ground blocks produce elevated concentrations of H2SO4 (acid). This acid can have potentially deleterious effects on the environment. As such, these blocks will require long-term (500 years) monitoring and maintenance.
Presently the So is removed from the product stream, piped in a molten state, and poured over a low permeability liner in thin lifts. As the So cools and undergoes crystal structure change it fractures, creating preferential flow passages which are potentially highly conductive. An understanding of the liquid conductivity (Kl) of the block and knowledge regarding the spatial and temporal distribution of acid (H2SO4) within these blocks is required. In this thesis, gas pumping tests were conducted on an above ground block to determine the gas flow rates within the block and to indirectly determine the Kl of the block. Measurements of the relative humidity (RH) in the block were used to observe changes in stored acid concentrations with time and location.
The results of the gas conductivity (Kg) testing showed that the block is anisotropic and is highly conductive in both the horizontal and vertical directions. Cross hole tests appeared to produce the most representative estimates of Kg due to the negation of turbulence that arises in the vicinity of the borehole. The choice of gas used in the analysis had negligible effect on the resulting Kl in contrast to choice of liquid, which resulted in larger variations in Kl. The Kl was a maximum when the liquid was pure water and decreased with increasing acid strength. The geometric mean of the resulting cross hole Kl values was 2 x 10-3 m s-1 (pure water).
RH measurements were observed to fluctuate with depth and increased following precipitation. The resulting minimum pH observed within the block occurred at depths of 3 and 7 meters below the surface of the So block and increased with depth. The arithmetic mean pH value based on the daily averaged RH measurements was -1.7.
|
Page generated in 0.0744 seconds