• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Balancing Privacy and Accuracy in IoT using Domain-Specific Features for Time Series Classification

Lakhanpal, Pranshul 01 June 2023 (has links) (PDF)
ε-Differential Privacy (DP) has been popularly used for anonymizing data to protect sensitive information and for machine learning (ML) tasks. However, there is a trade-off in balancing privacy and achieving ML accuracy since ε-DP reduces the model’s accuracy for classification tasks. Moreover, not many studies have applied DP to time series from sensors and Internet-of-Things (IoT) devices. In this work, we try to achieve the accuracy of ML models trained with ε-DP data to be as close to the ML models trained with non-anonymized data for two different physiological time series. We propose to transform time series into domain-specific 2D (image) representations such as scalograms, recurrence plots (RP), and their joint representation as inputs for training classifiers. The advantages of using these image representations render our proposed approach secure by preventing data leaks since these image transformations are irreversible. These images allow us to apply state-of-the-art image classifiers to obtain accuracy comparable to classifiers trained on non-anonymized data by ex- ploiting the additional information such as textured patterns from these images. In order to achieve classifier performance with anonymized data close to non-anonymized data, it is important to identify the value of ε and the input feature. Experimental results demonstrate that the performance of the ML models with scalograms and RP was comparable to ML models trained on their non-anonymized versions. Motivated by the promising results, an end-to-end IoT ML edge-cloud architecture capable of detecting input drifts is designed that employs our technique to train ML models on ε-DP physiological data. Our classification approach ensures the privacy of individuals while processing and analyzing the data at the edge securely and efficiently.

Page generated in 0.0587 seconds