Spelling suggestions: "subject:"scanningssystem"" "subject:"scanningsystems""
1 |
Investigations of Flow Patterns in Ventilated Rooms Using Particle Image Velocimetry : Applications in a Scaled Room with Rapidly Varying Inflow and over a Wall-Mounted RadiatorSattari, Amir January 2015 (has links)
This thesis introduces and describes a new experimental setup for examining the effects of pulsating inflow to a ventilated enclosure. The study aimed to test the hypothesis that a pulsating inflow has potential to improve ventilation quality by reducing the stagnation zones through enhanced mixing. The experimental setup, which was a small-scale, two-dimensional (2D), water-filled room model, was successfully designed and manufactured to be able to capture two-dimensional velocity vectors of the entire field using Particle Image Velocimetry (PIV). Using in-house software, it was possible to conclude that for an increase in pulsation frequency or alternatively in the flow rate, the stagnation zones were reduced in size, the distribution of vortices became more homogeneous over the considered domain, and the number of vortices in all scales had increased. Considering the occupied region, the stagnation zones were moved away in a favorable direction from a mixing point of view. In addition, statistical analysis unveiled that in the far-field occupied region of the room model, stronger eddies were developed that we could expect to give rise to improved mixing. As a fundamental experimental study performed in a 2D, small-scale room model with water as operating fluid, we can logically conclude that the positive effect of enhanced mixing through increasing the flow rate could equally be accomplished through applying a pulsating inflow. In addition, this thesis introduces and describes an experimental setup for study of air flow over a wall-mounted radiator in a mockup of a real room, which has been successfully designed and manufactured. In this experimental study, the airflow over an electric radiator without forced convection, a common room-heating technique, was measured and visualized using the 2D PIV technique. Surface blackening due to particle deposition calls for monitoring in detail the local climate over a heating radiator. One mechanism causing particle deposition is turbophoresis, which occurs when the flow is turbulent. Because turbulence plays a role in particle deposition, it is important to identify where the laminar flow over radiator becomes turbulent. The results from several visualization techniques and PIV measurements indicated that for a room with typical radiator heating, the flow over the radiator became agitated after a dimensionless length, 5.0–6.25, based on the radiator thickness. Surface properties are among the influencing factors in particle deposition; therefore, the geometrical properties of different finishing techniques were investigated experimentally using a structured light 3D scanner that revealed differences in roughness among different surface finishing techniques. To investigate the resistance to airflow along the surface and the turbulence generated by the surfaces, we recorded the boundary layer flow over the surfaces in a special flow rig, which revealed that the types of surface finishing methods differed very little in their resistance and therefore their influence on the deposition velocity is probably small. / Det övergripande syftet med den första studien i avhandlingen var att undersöka hypotesen att ett pulserande inflöde till ett ventilerade utrymme har en potential till att förbättra ventilationens kvalitet genom att minska stagnationszoner och därigenom öka omblandningen. För genomförande av studien byggdes en experimentuppställning i form av en tvådimensionell (2D) småskalig modell av ett ventilerat rum. Strömningsmediet i modellen var vatten. Det tvådimensionella hastighetsfältet registrerades över hela modellen med hjälp av Particle Image Velocimetry (PIV). Vid ett stationärt tillflöde bildas ett stagnationsområde i centrum av rumsmodellen. Vid ett pulserade inflöde genererades sekundära virvlar. Med en egen utvecklad programvara var det möjligt att kvantifiera statistiken hos virvlarna. Det pulserade inflödet gjorde att inom området där det vid stationärt tillflöde fanns en stagnationszon ökade antalet virvlar i alla storlekar och fördelningen av virvlar blev mera homogen än tidigare. Detta kan förväntas ge upphov till förbättrad omblandning. Baserat på en grundläggande experimentell studie utförd i en småskalig tvådimensionell rumsmodell med vatten som strömningsmedium kan vi logiskt dra slutsatsen att ett pulserande tilluftsflöde har en potential att förbättra omblandningen. I en fortsatt studie i avhandlingen visuliserades och mättes hastighetsfältet och därefter beräknades statistiska värden av exempelvis medelhastighet, standardavvikelse och skjuvspänning hos hastighetsfluktuationerna i luftströmmen över en väggmonterad radiator med 2D-PIV-teknik. Bakgrunden till studien är att en bidragande orsak till partikelavsättning på väggytor är turbofores som uppträder vid en turbulent luftström. Studien genomfördes genom uppbyggnad av en fullskalig rumsmodell. Eftersom turbulens spelar en roll vid partikelavsättning genom turbofores är det viktigt att identifiera var det laminära flödet över radiatorn blir turbulent. Resultaten baserat på visualisering och PIV-mätningar indikerade att, för ett rum med denna typ av radiatoruppvärmning, blev flödet över radiatorn turbulent efter en dimensionslös längd lika med 5,0‒6,25 gånger radiatorns tjocklek. Ytors egenskaper är viktiga vid partikelavsättning. Därför har de geometriska egenskaperna hos några olika metoder för ytbehandling undersökts experimentellt med hjälp av en scanner för strukturerat 3D-ljus. Resultaten visar på skillnader i ytråhet hos de olika ytbehandlingsmetoderna. För att undersöka motståndet mot luftströmning längs ytan och den turbulens som genereras av ytorna registrerade vi gränsskiktsflödet över ytorna i en speciell luftströmningsrigg. Detta påvisade att motståndet hos de olika typerna av ytbehandlingsmetoder skilde sig mycket litet åt och därför är troligt vid deras påverkan på depositionshastigheten mycket liten. / <p>QC 20150525</p>
|
Page generated in 0.0893 seconds