• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 31
  • 8
  • Tagged with
  • 76
  • 51
  • 46
  • 32
  • 21
  • 21
  • 21
  • 18
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Entwicklung und Charakterisierung von Kathodenmaterialien für Lithium-Schwefel-Akkumulatoren

Kensy, Christian 11 May 2022 (has links)
Die zunehmenden Leistungsanforderungen an Energiespeichersysteme, insbesondere die Energiedichte betreffend, führen dazu, dass der Bedarf durch die am häufigsten verwendete Lithium-Ionen-Technologie bald nicht mehr bedient werden kann. Unter den Batterietechnologien der nächsten Generation zeigt die Lithium-Schwefel-(Li-S)-Batterie ein großes Potenzial. Jedoch verhindern die technologischen Herausforderungen der Li-S-Zellchemie (z. B Anodenkorrosion, Elektrolytzersetzung oder Polysulfid-Shuttle) eine breite Kommerzialisierung. Zusätzlich liegen die praktisch erreichbaren gravimetrischen Energiedichten noch weit unter den theoretischen Werten. Im Rahmen dieser Arbeit wurden verschiedene poröse Kohlenstoffe und kovalente Triazin Netzwerke (covalent triazine framework - CTF) zu Schwefelkathoden verarbeitet und in unterschiedlichen Elektrolytsystemen elektrochemisch analysiert. Ein Ziel dieser Arbeit war es, ein skalierbares N-dotiertes Kathodenmaterial für den Einsatz in Prototypzellen zu entwickeln. Weiterhin wurde der Einfluss der Kohlenstoffporosität in unterschiedlichen Elektrolytsystemen diskutiert. Es wurde erfolgreich eine skalierbare, post-synthetische Imprägnierungsroute entwickelt, um N-dotierte Kohlenstoffe aus kommerziellen Kohlenstoffmaterialien und Melamin herzustellen. Mit Hilfe des Veredelungsprozesses wurde erstmals ein N-dotierter Kohlenstoff aus einem porösen Ruß (Ketjenblack) im größeren Maßstab (~100 g) hergestellt und erfolgreich zu doppelseitigen Li-S-Kathoden verarbeitet. Sowohl die galvanostatischen Ergebnisse (vs. Li/Li+) als auch die Analyse im symmetrischen Zellaufbau (S8 vs. Li2S) zeigten den positiven Einfluss der N-Dotierung auf die Lebensdauer der Knopfzellen. Trotz des geringen Stickstoffgehalts von 1,08 Gew.% im N-Dotierten Kathodenmaterial erzielte die fünflagige Demonstratorzelle eine gravimetrische Energiedichte von 238 Wh kg-1 (~1,30 Ah) und eine erhöhte Zyklenstabilität gegenüber dem undotierten Referenzmaterial. Somit wurde zum ersten Mal der positive Effekt der N-Dotierung erfolgreich von der Knopfzelle auf die Pouchzelle übertragen. Als alternatives N-dotiertes Kathodenmaterial erlangten kovalente Triazin Netzwerke große Aufmerksamkeit. Allerdings hat die Charakterisierung von CTF-Kathoden mit kovalent gebundenem Schwefel gezeigt, dass zuvor berichtete Vorteile dieser Gerüststrukturen überdacht werden müssen. Anhand der elektrochemischen Ergebnisse im carbonatbasierten LP30-Elektrolyten wurde geschlussfolgert, dass CTF-Materialien im Gegensatz zum literaturbekannten Referenzsystem S-PAN einen anderen Umwandlungsmechanismus durchlaufen. Die Charakterisierung im DME/DOL-Elektrolyten zeigte, dass die Synthesetemperatur und damit die Leitfähigkeit der CTF-Materialien einen deutlich größeren Einfluss auf die Zellperformance hat als bisher in der Literatur angenommen. Vielmehr haben die Ergebnisse darauf hingedeutet, dass der Umwandlungsmechanismus wahrscheinlich über das leitfähige Kohlenstoffadditiv (Ketjenblack) abläuft und das CTF-Material eher als Wirtsstruktur für Polysulfide bzw. den Elektrolyten fungiert. Ein anderer Forschungszweig beschäftigt sich mit dem Einschluss von Schwefel in Poren, da die eingeschlossenen Schwefelspezies im carbonatbasierten Elektrolyten betrieben werden können. Die Ausbildung einer schützenden Passivierungsschicht auf der Kathodenoberfläche (cathodic electrolyte interface – CEI) realisiert die Quasi-Festkörperumwandlung des Schwefels. Es wurden verschiedene mikroporöse Modellkohlenstoffe und ein mesoporöser Ruß als Schwefelkathoden im carbonatbasierten LP30-Elektrolyten untersucht. Obwohl die Komposite nach einem Verdampfungsschritt bei 300 °C geringe Schwefelgehalte (22 Gew.% und 30 Gew.%) aufwiesen, wurden stabile Zellperformances bis zu 200 Zyklen sowie der Quasi-Festkörperkonversionsmechanismus beobachtet. Außerdem zeigten die elektrochemischen Analysen die Ausbildung einer schützenden CEI-Schicht auf der Kathodenoberfläche. Für das schmelzinfiltrierte mesoporöse KB/S-Komposit wurde nahezu keine Schwefelausnutzung beobachtet, da wahrscheinlich keine geschlossene CEI-Schutzschicht ausgebildet wurde. Dagegen zeigten die schmelzinfiltrierten mikroporösen C/S-Proben nach einem höheren initialen Kapazitätsverlust eine moderate Schwefelausnutzung. Weiterhin wurde mit Hilfe von Röntgenabsorptionsspektroskopie (X-ray absorption spectroscopy – XAS) die Natur der adsorbierten Schwefelmoleküle analysiert. Die XAS-Ergebnisse deuteten darauf hin, dass, wenn überhaupt, nur ein kleiner Anteil des Aktivmaterials als kurzkettige Schwefelspezies (S2, S4) in den Mikroporen vorliegt. Dennoch wurden erstmals Aussagen zur chemischen Umgebung von eingeschlossenen Schwefelspezies in Mikroporen gemacht. Somit konnte geschlussfolgert werden, dass die Hauptrolle der mikroporösen Kohlenstoffmatrix (dp < 2 nm) darin besteht, die Ausbildung einer geschlossenen schützenden CEI-Schicht auf den Kohlenstoffpartikeln zu ermöglichen, anstatt kurzkettige Schwefelspezies im Inneren als notwendige Voraussetzung für den reversiblen Betrieb bereitzustellen. Die Entwicklung von innovativen Elektrolyten mit reduzierter Polysulfid-Löslichkeit ist ein weiterer Lösungsansatz, um höhere Energiedichten in Prototypzellen zu realisieren. Um den Einfluss der Gerüstporosität (Mikroporen, Mesoporen, hierarchische Poren) auf den modifizierten Konversionsmechanismus zu untersuchen, wurden verschiedene poröse Kohlenstoffmaterialien mit variierendem Porenvolumen als Schwefelkathoden in zwei Elektrolyten mit geringer Polysulfid-Löslichkeit (TMS/TTE & HME/DOL) evaluiert. Die mikroporösen Elektroden zeigten im TMS/TTE-Elektrolyten ein zusätzliches drittes Entladungsplateau, welches durch den Quasi-Festkörpermechanismus hervorgerufen wird. Dieses Phänomen wurde zuvor noch nicht für den TMS/TTE-Elektrolyten beschrieben. In den elektrochemischen Ergebnissen wurde die Bildung einer CEI-Schicht beobachtet, die aus der Zersetzung des TTE-Lösungsmittels an der Kohlenstoffoberfläche resultiert. Für die weiteren untersuchten Kohlenstoffe konnte ein kombinierter Reaktionsmechanismus aus fest-flüssig-fest sowie quasi-fest-zu-fest Umwandlung nicht ausgeschlossen werden, wobei vorwiegend die gewöhnliche fest-flüssig-fest Schwefelkonversion beobachtet wurde. Für den HME/DOL-Elektrolyten konnte aufgrund der eingeschränkten Polysulfid-Löslichkeit ebenfalls eine Kombination aus der fest-flüssig-fest Schwefelkonversion und dem Quasi-Festkörpermechanismus angenommen werden. Im Vergleich zum TMS/TTE-System scheint jedoch eine abgewandelte Form der quasi-fest-zu-fest Umwandlung stattzufinden, da sich die Spannungsprofile deutlich unterscheiden und keine CEI-Ausbildung festgestellt wurde. Vermutlich beeinflusst die Kohlenstoffporosität den gehinderten Massentransport während der Schwefelumsetzung im HME/DOL-Elektrolyten. Zusammenfassend wurden neue mechanistische Einblicke für den Betrieb von Li-S-Batterien gewonnen, bei denen Elektrolyte mit geringer Polysulfid-Löslichkeit angewendet werden.:Abkürzungsverzeichnis I 1 Einleitung und Motivation 1 2 Theorie und Stand der Forschung 6 2.1 Thermodynamische Grundlagen 6 2.2 Definitionen wichtiger Batteriekenngrößen 8 2.2.1 Einfluss von Überspannungseffekten 8 2.2.2 Einführung der spezifischen Kapazität und Energiedichte 11 2.2.3 Einführung der C-Rate und der Coulomb-Effizienz 12 2.2.4 Einführung des Spannungsprofils und der Zyklenstabilität 12 2.3 Die Lithium-Schwefel-Batterie 13 2.3.1 Der grundsätzliche Reaktionsmechanismus der Li-S-Batterie 13 2.3.2 Herausforderungen der Li-S-Technologie 19 2.3.3 Elektrolyte für die Li-S-Batterie 22 2.3.4 Überblick über die Anoden- und Separator-Entwicklung im Li-S-System 31 2.3.5 Überblick über die Kathodenentwicklung in Li-S-Batterien 37 2.4 Charakterisierungsmethoden 47 2.4.1 Stickstoff-Physisorption 47 2.4.2 Elektrochemische Charakterisierung 52 3 Experimenteller Teil 56 3.1 Verwendete Chemikalien 56 3.2 Kohlenstoffsynthesen 58 3.2.1 Synthese von hierarchisch porösen Kohlenstoffen (HPC) 58 3.2.2 Synthese von TiC-CDC 59 3.2.3 Stickstoffdotierung von Kohlenstoffen 59 3.3 Synthese der Kohlenstoff/Schwefel-Komposite 61 3.3.1 Verdampfungsprozess bei 300 °C 61 3.4 Elektrodenherstellung 62 3.4.1 Kohlenstoff/Schwefel-Kathoden 62 3.4.2 Kovalent-Triazin-Netzwerk-Kathoden 62 3.5 Elektrolytherstellung 63 3.6 Einlegetest im Elektrolyten 64 3.7 Strukturelle Charakterisierungsmethoden 64 3.7.1 Stickstoff-Physisorption 64 3.7.2 Wasser-Physisorption 65 3.7.3 Thermogravimetrische Analysen 65 3.7.4 Elementaranalysen 65 3.7.5 Raman Spektroskopie 65 3.7.6 Pulver-Widerstandsmessung 65 3.7.7 Rasterelektronenmikroskopie 66 3.7.8 Transmissionselektronenmikroskopie 66 3.7.9 Röntgenphotoelektronenspektroskopie 66 3.7.10 Röntgenabsorptionspektroskopie 67 3.8 Elektrochemische Charakterisierung 68 3.8.1 Elektrochemische Analyse in Knopfzellen 68 3.8.2 Elektrochemische Analyse in Pouchzellen 72 4 Auswertung und Diskussion 73 4.1 Thermische Veredelung von porösen Kohlenstoffmaterialien 73 4.1.1 Funktionalisierung des porösen Rußes Ketjenblack mit Melamin 73 4.1.2 Funktionalisierung von weiteren porösen Kohlenstoffmaterialien 94 4.2 Kovalente Triazin-Netzwerke als Li-S-Kathoden 102 4.2.1 Diskussion der mechanistischen Rolle von CTF-Materialien in Li-S-Kathoden 103 4.2.2 Elektrochemische Charakterisierung der S@CTF-Kathoden 105 4.3 Die Rolle der Kohlenstoffporosität bei der Ausbildung einer kathodischen Passivierungsschicht in Li-S Zellen 112 4.3.1 Materialcharakterisierung der mikroporösen Kohlenstoffe 114 4.3.2 Elektrochemische Charakterisierung in Knopfzellen vs. Li/Li+ 120 4.4 Der Einfluss der Kohlenstoffporosität auf die Schwefelumsetzung bei Anwendung von Elektrolyten mit geringer Polysulfid-Löslichkeit 130 4.4.1 Materialcharakterisierung der verschiedenen porösen Kohlenstoffe 131 4.4.2 Stabilitätstest der Li-S-Kathoden in verschiedenen Elektrolyten 136 4.4.3 Voruntersuchungen der Kathodenmaterialien im DME/DOL-Standardelektrolyten (vs. Li/Li+) 140 4.4.4 Elektrochemische Evaluierung im TMS/TTE Elektrolyten (vs. Li/Li+) 146 4.4.5 Elektrochemische Evaluierung im HME/DOL Elektrolyten (vs. Li/Li+) 157 5 Zusammenfassung und Ausblick 166 6 Anhang 171 7 Literaturverzeichnis 184 8 Abbildungsverzeichnis 194 9 Tabellenverzeichnis 200 10 Wissenschaftliche Beiträge 201 11 Eidesstattliche Erklärung 203
52

Schwefelinduzierte Strukturen auf der Palladium (111)-Oberfläche nach Segregation bzw. Adsorption von Schwefel / Structures of sulfur on palladium (111) created by adsorption and segregation of sulfur

Rauch, Thomas 15 September 2000 (has links)
In dieser Arbeit konnte erstmals die Stapelfolge der reinen Pd(111)-Oberfläche aus atomar aufgelösten RTM-Messungen einer Stufe bestimmt werden. Die Ergebnisse dieser Messungen wurden durch LEED-Messungen bestätigt. Damit ist es möglich, in einer RTM-Messung zwischen den unterschiedlichen dreifach koordinierten Adsrptionsplätzen zu unterscheiden. Basierend auf diesen Ergebnissen wurden die unterschiedlichen Strukturen von einer schwefelbedeckten Pd(111)-Oberfläche untersucht. Dabei bestimmen die Präparationsbedingungen die sich bildende Struktur. Die Oberfläche wurde sowohl durch Adsorption von H²S-Gas als auch durch Segregation von Schwefelverunreinigungen aus dem Volumen präpariert. Unterschiede zwischen den beiden Präparationsmechanismen wurden herausgearbeitet, Präparationsbedingungen zur selektiven Präparation einzelner Strukturen wurden bestimmt. Basierend auf atomar aufgelösten Spektroskopiemessungen und Simulationsrechnungen konnte ein neues Modell der (√7 × √7)R19°-Struktur entwickelt werden. Die Messungen an der (2 × 2)- bzw. der √3 × √3)-Struktur bestätigen die bekannten Strukturmodelle.
53

Schwefelhaltige Arsenspezies in Grundwässern: Strukturaufklärung, Analytik und Sanierungsstrategien

Stauder, Stefan 13 March 2007 (has links)
Es wurde eine Arsenkontamination von Boden und Grundwasser im Bereich einer Zellstofffabrik untersucht, die auf Ablagerungen von Eisenoxidschlacken (Rückstände aus der Pyritröstung) mit hohem Gehalt an verschiedenen Spurenelementen zurückzuführen ist. Der Standort ist dadurch gekennzeichnet, dass über viele Jahre Lösungen aus der Celluloseproduktion („Sulfitablauge“) versickerten. Hierdurch gelangten größere Mengen an Sulfat und organischen Stoffen in den Untergrund. Infolgedessen weist das Grundwasser einen stark reduzierten, sulfidischen Chemismus auf. Ein Großteil der Spurenelemente wurde aus der Schlacke im Oberboden in den darunter liegenden wassergesättigten Bereich transportiert und dort in Form von sulfidischen Niederschlägen festgelegt. Eine Ausnahme bildet Arsen, das unter den spezifischen Milieubedingungen im Schadenzentrum lösliche schwefelhaltige Verbindungen bildet (max. 4 mg As/L). Diese Arsen-Schwefel-Spezies wurden erstmals mit einer neu entwickelten IC-ICP/MS- Methode in einem Grundwasser nachgewiesen. Die Grundwasser- und Bodenuntersuchungen sowie begleitende hydrogeologische Messungen ergaben, dass die Arsen-Schwefel-Spezies innerhalb einer Fließstrecke von 30-80 m im Abstrom des Schadenzentrums vollständig immobilisiert werden. Bei der Festlegung von Arsen spielt die biologische Sulfatreduktion, die durch versickerte Sulfitablauge ermöglicht wurde, eine entscheidende Rolle. Anhand dieser Erkenntnisse wurde im Jahr 2000 ein natural attenuation-Konzept zur Sicherung des Standortes ausgearbeitet. Nach Auswertung der Ergebnisse der Standortuntersuchungen aus den Jahren 1999-2005 sowie einer Literaturrecherche zur Arsen-Schwefel-Chemie wurden die Struktur und das Verhalten der unbekannten Arsen-Schwefel-Spezies sowie die Vorgänge bei der Festlegung von Arsen im Boden genauer untersucht. Das wesentlichste Ergebnis der Arbeiten ist, dass in sulfidischen Systemen, z.B. in Grundwässern unter Sulfat reduzierenden Bedingungen, Thioarsenate gebildet werden. In Lehrbüchern und Fachpublikationen aus den vergangenen Jahrzehnten wurde bislang ausschließlich die Existenz von Thioarseniten vermutet. Ursache für die Bildung von Thioarsenaten ist eine hohe Affinität zwischen Arsen und Schwefel, die eine Oxidation von As(III) durch Anlagerung eines Schwefelatoms an dessen freiem Elektronenpaar „erzwingt“. In sulfidhaltigen Lösungen wird hierzu ein Teil des As(III) zu elementarem Arsen reduziert. Das zunächst gebildete Monothioarsenat wird weiter zu den schwefelhaltigeren Thioarsenaten sulfidiert. In sulfidischen Grundwässern bestimmen deshalb die Anionen von Oxomonothioarsenat, Oxodithioarsenat, Oxotrithioarsenat und Tetrathioarsenat das Verhalten von Arsen. Wesentlich für das Verständnis der Arsen-Schwefel-Chemie ist auch die Instabilität der As-SH-Gruppen, die entsprechend dem Dissoziationsverhalten der jeweiligen Arsen-Schwefel-Spezies gebildet werden. Dies erfolgt bei pH-Werten im Bereich von ca. 7-8,5, wobei die monomeren Anionen unter Abspaltung von Schwefelwasserstoff kondensieren. Infolgedessen muss in Grundwässern auch mit polymeren Thioarsenaten gerechnet werden. In saurer Lösung zerfallen die Thioarsenate in arsenige Säure und Schwefel bzw. fallen als Arsenpentasulfid aus. Arsen wird in sulfidischen Aquiferen als Sulfid (z.B. As4S4), als Arsenpyrit (FeAsS) oder durch Einbau von Arsen als Schwefelsubstituent in das Kristallgitter von Mackinawite bzw. Pyrit (FeS, FeS2) festgelegt. Die ermittelten Prozesse können ggf. zur Sanierung bzw. Sicherung von Standorten mit arsenhaltigen Rückständen im Boden bzw. von arsenbelasteten Grundwässern eingesetzt werden. Dabei ist auch von Bedeutung, dass Thioarsenate nach derzeitigem Kenntnisstand relativ gering toxisch sind. Im Umgang mit Thioarsenaten, z.B. auch bei der Analyse von Arsen in sulfidischen Proben, ist jedoch deren Umwandlung in arsenige Säure bei einer pH-Absenkung und auch bei Sauerstoffzutritt zu berücksichtigen. Die biologische Sulfatreduktion spielt eine wesentlich größere Rolle für die Mobilität von Arsen in Grundwässern als bisher angenommen. Im Hinblick auf die weltweit große gesundheitliche Relevanz von Arsen im Trinkwasser und auf mögliche Sanierungsverfahren sollten die Umsetzungen von Arsen unter Sulfat reduzierenden Bedingungen eingehender untersucht werden. / The motivation for the thesis was a project at an industrial site conducted in 1999 to define a remediation concept for soil and groundwater contaminated with arsenic. The contamination resulted from the deposition of residuals from pyrite burning (iron oxides containing different trace elements) in the upper soil many years ago. Because of long-term pollution with process waters rich in organic substances and sulfate, the aquifer is strongly reduced (sulfidic). Most of the arsenic was transferred out of the contaminated soil into the saturated zone in a depth of 7-10 m. There it is partly immobilized as sulfide precipitations, but part of it is solved in the groundwater in form of arsenic-sulfur-complexes (up to 4 ppm). These complexes were detected for the first time in a groundwater by means of an improved IC-ICP-MS method. It was also found that approx. 80 m downstream of the contaminated spot the concentrations of arsenic in soil and groundwater were not increased. On this basis a natural attenuation concept was proposed in 2000. The data from the investigated site was evaluated and specific laboratory tests were carried out in order to identify the unknown arsenic species as well as the processes which lead to their immobilization in the aquifer. The key role of the soluble arsenic-sulfur complexes for the mobility and toxicity of arsenic in sulfate-reducing environments is commonly accepted. In the past, thioarsenites were assumed to be the existing species in sulfidic systems. In this study, however, thioarsenates were identified in solutions spiked with in arsenite and hydrogen sulfide as well as in the contaminated groundwater. The unexpected finding of an oxidation of arsenite to thioarsenates in strongly reducing systems can be explained by the high affinity between As(III) and sulfur. In sulfide containing solutions without any oxidant, arsenite therefore undergoes disproportionation to thioarsenates and elemental arsenic. This was already found out in the 19th century, but has been neglected in publications from the last decades. According to the results of this study the anions of oxomonothioarsenate, oxodithioarsenate, oxotrithioarsenate und tetrathioarsenate are the dominating arsenic species in sulfidic waters. The partitioning of the four species is governed mainly by the sulfide concentration. Beside the high affinity between arsenic and sulfur, the instability of the As-SH group is essential to understand the reactions in the arsenic-sulfur system. As soon as the arsenic-sulfur complexes form As-SH groups (according to their dissociation characteristics) they condensate in separating hydrogen sulfide. Thioarsenates form polymers in the pH range of approx. 7-8.5. Therefore beside the mentioned monomers, thioarsenate polymers can also be important in natural environments. In more acidic solutions they decay into arsenite and sulfur or precipitate as arsenic-pentasulfide. When analyzing arsenic in sulfide containing solutions, it has always to be taken into account that thioarsenates are highly sensitive to oxygen and pH. Therefore, e.g. arsenic speciation by means of HG-AAS is not suitable for sulfidic waters and can wrongly indicate a mixture of arsenite and arsenate. It has previously been supposed that the mobility as well as the toxicity of arsenic increase if the redox state decreases. For sulfidic waters the opposite is probably the case owing to the formation of thioarsenates. The toxicity of arsenite is due to the high reactivity of the As(III) towards sulfohydroxyl groups in proteins. Without a free electron pair and sulfur already incorporated, thioarsenates should be less toxic compared to arsenite. Arsenic can be mobilized out of contaminated soils in form of thioarsenates via infiltration of sulfide solutions or by input of sulfate and biodegradable organic matter. In the presence of iron, thioarsenates can be fixated in sulfidic aquifers as a minor substitute in mackinawite and biogenic pyrite or as arsenic pyrite. Bacterial sulfate reduction is a crucial factor for the mobilization and immobilization of arsenic in reduced aquifers. Considering the negative health impacts of arsenic for millions of people worldwide, as well as the implementation of the mentioned remediation strategies the arsenic-sulfur chemistry deserves closer attention.
54

Laser-Induced Breakdown Spectroscopy in the Vacuum-Ultraviolet Wavelength Regime for the Application in Planetary Exploration

Kubitza, Simon 22 April 2021 (has links)
Diese Arbeit handelt von der Anwendbarkeit laserinduzierter Plasmaspektroskopie (englisch: laser-induced breakdown spectroscopy, LIBS) mit Detektion im vakuumultravioletten Spektralbereich (VUV), im Folgenden VUV-LIBS genannt, im Bereich der Planetenforschung. Für LIBS wird ein gepulster Laser auf die zu untersuchende Probe fokussiert. Dabei wird Probenmaterial abgetragen, verdampft und teilweise ionisiert. Die im Plasma enthaltenen Atome und Ionen werden elektronisch angeregt und strahlen in der Folge Licht charakteristischer Wellenlängen ab, welches spektroskopisch analysiert werden kann. Diese Analyse erlaubt einen Rückschluss auf die im Plasma und somit in der Probe enthaltenen chemischen Elemente. Mit LIBS können alle Elemente detektiert werden. Allerdings sind insbesondere die Nichtmetalle schwerer zu detektieren, deren intensivste Emissionslinien im VUV-Bereich liegen, d.h. bei Wellenlängen kürzer als 200 nm, der oft nicht untersucht wird. In diesem Spektralbereich wird ein Großteil der Strahlung von der irdischen Atmosphäre absorbiert. Auf atmosphärelosen Himmelskörpern wie dem Mond ist dies nicht der Fall, sodass für die Elemente C, Cl, H, N, O, P und S eine verbesserte Detektierbarkeit erwartet wird als mit konventionellem LIBS im typischerweise untersuchten Spektralbereich über 200 nm. Die hier präsentierten Ergebnisse deuten darauf hin, dass VUV-LIBS in der Tat eine verbesserte Detektierbarkeit für S und Cl im Kontext einer Mondmission bewirken kann. Für eine umfassende Beurteilung der Methode in dieser Anwendung und zur Verbesserung der Nachweisgrenzen sind jedoch weitere Untersuchungen mit einem verbesserten Messaufbau notwendig. Da wichtige gesteinsbildende Elemente wie Ca, Na und Mg im VUV-Bereich keine oder nur schwache Emission zeigen, liegt das größte Potenzial von VUV-LIBS möglicherweise in der Kombination mit LIBS in anderen Spektralbereichen oder mit anderen analytischen Methoden. / This thesis investigates the application of laser-induced breakdown spectroscopy (LIBS) with detection in the vacuum ultraviolet (VUV) spectral range for in-situ space exploration. For LIBS, a pulsed laser is tightly focused onto the sample, thereby ablating material and exciting a luminous plasma. The atoms and ions contained in the plasma radiate light of characteristic wavelengths, which can be analysed with spectrometers. The spectral analysis allows to identify the chemical elements in the plasma, which are assumed to be representative for the elements contained in the sample. With LIBS, all elements can be detected. However, especially the non-metal elements are challenging to detect because their strongest lines are located in the VUV spectral range, i.e. below 200 nm, which is often not investigated. Detection in this range brings its own challenges, since large parts of the radiation spectrum are absorbed by the atmosphere surrounding the sample. On celestial bodies without an atmosphere, such as the Moon, the ambient conditions are well suited for VUV-LIBS analyses. In such a scenario, a better detectability for the otherwise challenging elements C, Cl, H, N, O, P and S is expected compared to LIBS in the usually employed detection range above 200 nm. The results shown in this thesis indicate that VUV-LIBS is promising for the improved detection of light elements such as S and Cl in a lunar context. However, more extensive studies with an optimized set-up are necessary to properly assess the true capabilities of the method and to further reduce the detection limits. Although emission from the most abundant chemical elements in geological samples, Al, Si and O, could be reliably detected in all samples containing them, VUV-LIBS might in the end be best used in combination with LIBS in the UV-VIS range or with other analytical techniques, because the major rock forming elements Ca, Na and Mg hardly show emission lines in the VUV spectral range.
55

New Biomimetic Analogues of Functional [2Fe-2S] Proteins / Neue biomimetische Analoga von funktionellen [2Fe-2S] Proteinen

Ballmann, Hans Joachim 29 October 2008 (has links)
No description available.
56

Biomimetic and Theoretic Investigations of Unusual Iron-Sulphur Clusters / Biomimetische und Theoretische Untersuchungen ungewöhnlicher Eisen-Schwefel-Cluster

Fuchs, Michael Günther Georg 21 October 2009 (has links)
No description available.
57

Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes

Shan, Jieqiong, Liu, Yuxin, Su, Yuezeng, Liu, Ping, Zhuang, Xiaodong, Wu, Dongqing, Zhang, Fan, Feng, Xinliang 19 December 2019 (has links)
Graphene-directed two-dimensional (2D) nitrogen-doped porous carbon frameworks (GPF) as the hosts for sulfur were constructed via the ionothermal polymerization of 1,4-dicyanobenzene directed by the polyacrylonitrile functionalized graphene nanosheets. As cathodes for lithium–sulfur (Li–S) batteries, the prepared GPF/sulfur nanocomposites exhibited a high capacity up to 962 mA h g⁻¹ after 120 cycles at 2 A g⁻¹. A high reversible capacity of 591 mA h g⁻¹ was still retained even at an extremely large current density of 20 A g⁻¹. Such impressive electrochemical performance of GPF should benefit from the 2D hierarchical porous architecture with an extremely high specific surface area, which could facilitate the efficient entrapment of sulfur and polysulfides and afford rapid charge transfer, fast electronic conduction as well as intimate contact between active materials and the electrolyte during cycling.
58

Block copolymer template-directed novel functional particles

Mei, Shilin 08 May 2017 (has links)
Gegenstand dieser Arbeit ist die Synthese neuer funktioneller Materialien unter Zuhilfenahme von Blockcopolymerpartikeln als „soft templates“ und die Untersuchung ihrer Anwendungsmöglichkeiten als Katalysator- und Energiespeichermaterialien. Drei Arten von Kompositpartikeln mit komplexen Strukturen wurden synthetisiert: Palladium@poly(styrol-b-2-vinylpyridin)@Dodecanthiol-Gold (Pd@PS-P2VP@DT-Au) Hybridpartikel, Polydopamin@Gold (PDA@Au) Nanoreaktoren und poröse Ti4O7 Partikel mit verbundener Porenstruktur. Im ersten Teil der Arbeit wurden Pd@PS-P2VP@Au Kern-Schale Partikel, bestehend aus DT-Au Aggregaten als Kern, umgeben von mit Palladium Nanopartikeln beschichtetem PS-P2VP als Schale hergestellt. Die auf die strukturierte P2VP Schale aufgebrachten Palladium Nanopartikel weisen im Vergleich mit anderen bekannten Systemen gute katalytische Eigenschaften für die Reduktion von 4-Nitrophenol mit NaBH4 auf. Im zweiten Teil wurden zum ersten Mal PDA@Au Nanoreaktoren mit verbundener Porenstruktur unter Verwendung einer „soft template“-Methode synthetisiert. Dabei wurden poröse PS-P2VP Partikel als Template verwendet. Mittels Elektronentomografie (ET) konnte die verbundene Porenstruktur mit den darin gleichmäßig verteilten Gold Nanopartikeln direkt abgebildet werden. Die PDA@Au Partikel wurden mithilfe der katalytischen Reduktion von 4-Nitrophenol kinetisch untersucht. Im dritten Teil wurden poröse Ti4O7 Partikel mit verbundener Porenstruktur als neuer Typ von Schwefel Wirtsmaterial für Lithium-Schwefel Batterien unter Zuhilfenahme von porösen PS-P2VP Templatpartikeln entwickelt. Die elektrochemische Untersuchung von Ti4O7/S und kohlenstoffbeschichtetem Ti4O7/S beim Einsatz als Kathodenmaterial ergab hervorragende Leistungsdaten von 1219 mAhg−1 bzw. 1411 mAhg−1 für die Anfangskapazität und eine Kapazitätserhaltung von 74% bzw. 77% nach 200 Zyklen. / The present thesis focuses on the synthesis of novel functional materials by using block copolymer particles as soft templates. Three types of particles with complex structures have been synthesized, involving palladium@poly(styrene-b-2-vinylpyridine)@dodecanethiol-gold (DT-Au) (Pd@PS-P2VP@DT-Au) hybrid particles, polydopamine@gold (PDA@Au) nanoreactors with Au nanoparticles immobilized in PDA channels, and porous Ti4O7 particles with interconnected-pore structure. Their possible applications as catalyst and energy storage materials have been studied. In the first part of the thesis, Pd@PS-P2VP@DT-Au core-shell particles, which consist of dodecanethiol-gold (DT-Au) aggregation as core and Pd coated PS-P2VP as shell, have been fabricated based on the Rayleigh instability of polymer nanotubes inside Anodic Aluminium Oxide (AAO) porous membranes. The hybrid particles show efficient catalytic activity for the reduction of 4-nitrophenol by NaBH4. The catalytic activity has been compared with other reported systems. In the second part, PDA@Au nanoreactors with interconnected channel structures have been synthesized for the first time by using porous PS-P2VP particles as soft template. Electron tomography (ET) provides direct visualization of the interconnected pore structure of the nanoreactors, inside of which Au nanoparticles are homogeneously embedded. Such PDA@Au particles have been explored as nanoreactors for kinetic studies using the reduction of 4-nitrophenol as the model reaction. In the third part, porous Ti4O7 and carbon-coated Ti4O7 particles with interconnected-pore structure have been developed as efficient sulfur-host material for lithium-sulfur batteries by using porous PS-P2VP particles as template. The Ti4O7/S and carbon-coated Ti4O7/S composites show excellent electrochemical performance with initial capacities of 1219 mAh g−1 and 1411 mAh g−1, capacity retentions of 74% and 77% after 200 cycles, respectively.
59

Biochemische und strukturelle Untersuchungen an Proteinen des reduktiven Acetyl-CoA-Weges

Götzl, Sebastian 25 November 2014 (has links)
Zahlreiche strikt anaerob lebende Mikroorganismen, darunter acetogene Bakterien, Sulfatreduzierer und methanogene Archaeen, nutzen den reduktiven Acetyl-CoA-Weg zur autotrophen Kohlenstoff-Fixierung oder Energiegewinnung. Die letzten Schritte der Acetyl-CoA-Bildung beruhen hierbei auf dem Zusammenspiel dreier Proteine, dem Corrinoid-Eisen/Schwefel-Protein (CoFeSP), der Methyltetrahydrofolat:CoFeSP-Methyltransferase (MeTr) und dem Acetyl-CoA-Synthase/CO-Dehydrogenase-Komplex (ACS/CODH). In der vorliegenden Arbeit wurde die Substratbindung an MeTr durch thermodynamische und kinetische Messungen untersucht. MeTHF bindet stärker an das Enzym als das demethylierte Produkt Tetrahydrofolat (THF) und scheint dabei einem einstufigen Bindungsmodell zu folgen. Das Substrat wird bei der Bindung an MeTr protoniert, wobei Asn200 eine protonierte H-N5(+)-CH3-Position des MeTHF durch eine alternative Konformation stabilisieren könnte. Asp44 und Asp76 bilden eine funktionelle Dyade bei der Substratbindung, kommen als Protondonoren zur Substrataktivierung jedoch nicht in Frage. Die Kristallstruktur von CoFeSP wurde erstmals vollständig mit der flexiblen N-terminalen [4Fe4S]-Cluster-Bindedomäne bestimmt. Die für die Cobalamin-Bindedomäne erwarteten Konformationsänderungen wurden anhand der Interaktion mit dem reduktiven Aktivator von CoFeSP (RACo) analysiert. Durch Förster-Resonanzenergietransfer wurde eine Annäherung der ortsspezifisch markierten CoFeSP-Positionen beobachtet und anhand des Fluoreszenzsignals die Kinetik der Komplexbildung mit RACo bestimmt. Durch gepulste Elektronendoppelresonanz konnte ebenfalls eine Abstandsänderung nachgewiesen werden. ACS wurde als apo-Enzym gereinigt und durch NiCl2-Rekonstitution in die aktive Form überführt. Durch die Kristallisation der C-terminalen ACS-Domäne wurden hochaufgelöste Strukturen erzeugt, welche eine Diskussion der strukturellen Details des aktiven Zentrums ermöglichen. / Several anaerobic microorganisms, including acetogenic bacteria, sulfate-reducing bacteria and methanogenic archaea operate the reductive acetyl-CoA pathway for autotrophic carbon fixation or to gain energy. The last steps of acetyl-CoA formation rely on three enzymes, the corrinoid-iron/sulfur-protein (CoFeSP), the methyltetrahydrofolate:CoFeSP methyltransferase (MeTr) and the acetyl-CoA synthase/CO dehydrogenase complex (ACS/CODH). Substrate binding to MeTr was investigated by thermodynamic and kinetic meassurements. MeTHF binds slightly stronger than the demethylated product tetrahydrofolate (THF), likely following a simple one-step-binding mechanism. Substrate binding to MeTr is coupled to proton uptake. A H-N5(+)-CH3-transition state of MeTHF could be stabilized by an alternative conformation of Asn200. Asp44 and Asp76 form a functional dyade in substrate binding but can be excluded as proton donors for substrate activation. The crystal structure of CoFeSP was solved completely, including the previously disordered N-terminal [4Fe4S]-cluster binding domain. The expected conformational change of the corrinoid binding domain was characterized by analyzing the interaction between CoFeSP and its reductive activator (RACo). An approach of the labeled CoFeSP positions in the CoFeSP:RACo complex was observed by Förster resonance energy transfer. Based on the corresponding fluorescence signal, the kinetics of complex formation were meassured in solution. Pulsed electron double resonance also showed that the labeled positions approach upon complex formation. Full-length ACS was purified in the apo state. A reconstitution of the A-cluster with NiCl2 resulted in active enzyme. Different crystal structures of the isolated C-terminal domain of ACS were solved at high resolution. Therefore, structural details of the active site could be discussed.
60

Proteinbiochemische, spektroskopische und röntgenkristallographische Untersuchung der Actinobakteriellen [NiFe]-Hydrogenase aus Ralstonia eutropha

Schäfer, Caspar 05 August 2014 (has links)
Im biogeochemischen Wasserstoffkreislauf erfolgt der überwiegende Teil der H2-Aufnahme aus der Atmosphäre durch die Böden. Erst seit kurzem ist bekannt, dass die Oxidation von Wasserstoff in Böden mutmaßlich durch eine Reihe von Bodenbakterien vermittelt wird, die zur Aufnahme von Wasserstoff in atmosphärischen Konzentrationen befähigt sind. Diese Bakterien codieren [NiFe]-Hydrogenasen einer neuen Gruppe, die als Gruppe 5 der [NiFe]-Hydrogenasen klassifiziert wurde. Auch das beta Proteobakterium Ralstonia eutropha besitzt die Gene einer derartigen Hydrogenase, die aufgrund ihrer Ähnlichkeit zu den sonst überwiegend in Actinobakterien gefundenen Vertretern der Gruppe 5 als „Actinobakterielle Hydrogenase“ (AH) benannt wurde. In der vorliegenden Arbeit wurde die AH aus R. eutropha als erste Gruppe 5-[NiFe]-Hydrogenase in reiner Form isoliert und eingehend durch unterschiedliche biochemische, spektroskopische und röntgenkristallographische Verfahren untersucht. Die hierbei erhaltenen Ergebnisse unterstützen die für Gruppe-5-[NiFe]-Hydrogenasen postulierte Funktion im Erhaltungsstoffwechsel der Organismen unter besonderen Bedingungen, schließen jedoch eine Beteiligung der AH an der hochaffinen Oxidation von Wasserstoff in Böden aus. Jedoch zeigt das Enzym die neuartige Eigenschaft der sauerstoffinsensitiven Wasserstoff-Oxidation, was auf die Anwesenheit eines ungewöhnlichen, durch 1 Aspartat und 3 Cysteine koordinierten [4Fe4S]-Clusters und der vermuteten Kopplung der Elektronentransportketten in der mutmaßlich physiologischen doppeldimeren Form des Enzyms zurückzuführen sein dürfte. Die Arbeit erweitert somit die Kenntnisse auf dem Gebiet der Sauerstofftoleranz von Hydrogenasen sowie der Eigenschaften der Gruppe 5-[NiFe]-Hydrogenasen und ihrer physiologischen Rolle in den betreffenden Organismen. / In the biogeochemical hydrogen cycle, the dominating process for hydrogen uptake from the atmosphere is performed in soils. Only recently it was shown that hydrogen oxidation in soils is presumably mediated by a number of soil-dwelling actinobacteria, which are enabled in high-affinity hydrogen uptake. These bacteria encode [NiFe] hydrogenases of a novel group classified as group 5 of [NiFe] hydrogenases. A hydrogenase of this group is also found in the beta proteobacterium Ralstonia eutropha and was named „Actinobacterial Hydrogenase“ (AH) for its similarity to the group 5 [NiFe] hydrogenases found in actinobacteria. In this work, the AH from R. eutropha was, as the first group 5 [NiFe] hydrogenase, purified to homogeinity and thoroughly characterized by various biochemical, spectroscopic and X-ray crystallographic methods. The results obtained hereby support the function in maintaining a basal metabolism under challenging conditions, that was postulated for group 5 [NiFe] hydrogenases. Yet, the results also exclude the possibility of the AH contributing to high-affinity hydrogen uptake in soils. However, the enzyme shows the novel property of being able of oxygen-insensitive hydrogen oxidation. This property is obviously connected to an unusual [4Fe4S] cluster coordinated by 1 aspartate and 3 cysteines, as well as to a supposed coupling of the electron transport chains in the double dimeric native form of the enzyme. Hence, this work broadens the knowledge in the field of oxygen tolerant hydrogen oxidation and provides new insights in the function of group 5 [NiFe] hydrogenases and their physiological role in the organisms.

Page generated in 0.2725 seconds