• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of fiber content and extrusion parameters on the properties of flax fiber - polyethylene composites

Siaotong, Bruno Antonio Consuegra 27 April 2006
Extrusion compounding addresses such problems as the non-homogeneity of the mixture and separation of fiber from the polymer during rotational molding, which consequently affect the mechanical and physical properties of the resulting composites. <p>Using triethoxyvinylsilane as chemical pre-treatment on flax fibers and linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) as polymer matrices, this study focused on the effects of flax fiber content (0%, 12.5% or 25%) and extrusion parameters such as barrel zone temperatures (75-110-120-130-140°C or 75-120-130-140-150°C) and screw speed (110 or 150 rpm) on the extrudate and composite properties (extrudate color, extrudate density, extrudate melt flow index, extrudate morphology, composite color, composite density, composite morphology, composite tensile strength and composite water absorption). <p>A mixture of chemically pre-treated flax fibers and powdered polyethylene matrices underwent extrusion compounding using a twin-screw extruder. The extrudates were then pelletized, ground, rotationally molded and cut into test specimens (composites). The mechanical and physical properties of both the extrudates and the composites from different treatments were then measured and compared. <p>Using multiple linear regression, models were generated to show quantitatively the significant effects of the process variables on the response variables. Finally, using response surface methodology and superposition surface methodology on the preceding data, the following optimum values for fiber content and extrusion parameters were determined: for LLDPE composites, fiber content = 6.25%, temperatures = 75-117.3-127.3-137.3-147.3°C, screw speed = 117.5 rpm; for HDPE composites, fiber content = 5.02%, temperatures = 75-118.1-128.1-138.1-148.1°C, screw speed = 125.56 rpm.
2

Effects of fiber content and extrusion parameters on the properties of flax fiber - polyethylene composites

Siaotong, Bruno Antonio Consuegra 27 April 2006 (has links)
Extrusion compounding addresses such problems as the non-homogeneity of the mixture and separation of fiber from the polymer during rotational molding, which consequently affect the mechanical and physical properties of the resulting composites. <p>Using triethoxyvinylsilane as chemical pre-treatment on flax fibers and linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) as polymer matrices, this study focused on the effects of flax fiber content (0%, 12.5% or 25%) and extrusion parameters such as barrel zone temperatures (75-110-120-130-140°C or 75-120-130-140-150°C) and screw speed (110 or 150 rpm) on the extrudate and composite properties (extrudate color, extrudate density, extrudate melt flow index, extrudate morphology, composite color, composite density, composite morphology, composite tensile strength and composite water absorption). <p>A mixture of chemically pre-treated flax fibers and powdered polyethylene matrices underwent extrusion compounding using a twin-screw extruder. The extrudates were then pelletized, ground, rotationally molded and cut into test specimens (composites). The mechanical and physical properties of both the extrudates and the composites from different treatments were then measured and compared. <p>Using multiple linear regression, models were generated to show quantitatively the significant effects of the process variables on the response variables. Finally, using response surface methodology and superposition surface methodology on the preceding data, the following optimum values for fiber content and extrusion parameters were determined: for LLDPE composites, fiber content = 6.25%, temperatures = 75-117.3-127.3-137.3-147.3°C, screw speed = 117.5 rpm; for HDPE composites, fiber content = 5.02%, temperatures = 75-118.1-128.1-138.1-148.1°C, screw speed = 125.56 rpm.

Page generated in 0.0602 seconds