• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 29
  • 25
  • 10
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 136
  • 136
  • 118
  • 50
  • 33
  • 32
  • 29
  • 27
  • 27
  • 26
  • 25
  • 24
  • 23
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural studies of the inner-membrane platform of the bacterial type II secretion system

Zhang, Hui January 2018 (has links)
The type II secretion system (T2SS) is widespread in Gram-negative bacteria that cause disease in animals and plants. In human and animal pathogens toxins are secreted (e.g. cholera toxin) and in plant pathogens lytic enzymes that breakdown the plant cell wall are exported in to the extracellular milieu (e.g. pectate lyase). Structurally the T2SS comprises at least 11 core proteins that form three major subassemblies spanning the inner-membrane, periplasmic space and outer-membrane: (i) the inner-membrane platform and associated cytoplasmic ATPase (E); (ii) the pseudopilus, which consists of five pseudopilins, G to K; and (iii) a large, pore-forming outer-membrane complex secretin D. The inner-membrane platform comprises three single transmembrane helix proteins, and one three transmembrane helix protein, OutF. The evidence from cryo-electron microscopy on the related type IVa pilus machine (T4PS) places the protein corresponding to OutF at the centre of this platform. This platform is responsible for assembling the pilus and for communicating between the periplasm and the cytoplasmic ATPase. To date, no high-resolution structure of a full-length OutF/PilC family protein is available. A low-resolution electron microscopy reconstruction of isolated PilG (PilC ortholog from Neisseria meningitides T4PS) showed a tetrameric two lobed structure. Here I report the results of studying the structure of the inner-membrane protein OutF from Dickeya dadantii and the complete inner-membrane platform comprising 9 proteins: OutEFGHIJKLM. This work involved cloning the corresponding operon, purifying the proteins, and using crystallography and electron microscopy. Key results reported here are the crystal structure of the first cytoplasmic domain of Dickeya dadantii, OutF65-172 and a preliminary three-dimensional model of the Dickeya dadantii inner-membrane platform. This model, and higher-resolution models to come, will provide valuable information about the oligomeric state, and arrangement of the inner-membrane proteins. These studies will help us to understand how the type II secretion system works.
2

Functional Analysis of the YopN/SycN/YscB/TyeA Complex of Yersinia pestis

Joseph, Sabrina S. 19 November 2009 (has links)
A plasmid-encoded Type III Secretion System (T3SS) is employed by human pathogenic yersiniae to inject effector proteins, termed Yops, directly into host cells. The secretion of Yops is tightly regulated, and occurs only upon contact with a eukaryotic cell in vivo or in media devoid of calcium in vitro. A complex containing the secreted protein YopN, its heterodimeric chaperone SycN/YscB, and TyeA is required to prevent secretion of effector Yops until the appropriate secretion-triggering signals are encountered. The mechanism by which these proteins regulate the T3S process is unknown. A mutational analysis of YopN and TyeA was performed to identify regions and residues of these proteins that are required to regulate Yop secretion. Amino-acid residues of TyeA were identified that were specifically required for the interaction of TyeA with YopN, confirming that the YopN/TyeA interaction is essential for the regulation of Yop secretion. Furthermore, analysis of TyeA mutants identified a surface-exposed region that was critical for the regulation of Yop secretion, but not required for interaction with YopN. YopN residues critical for the regulation of secretion clustered within the N- and C-terminal regions of YopN that were required to interact with the SycN/YscB chaperone and TyeA, respectively. No residues critical for the regulation of secretion were identified in the central region of YopN, suggesting that this region acts primarily to maintain proper positioning of the functional N- and C-terminal regions of this complex. A novel role for the chaperone binding domain (CBD) of YopN in the regulation of Yop secretion was identified. This role was separate from its role in binding the SycN/YscB chaperone and targeting YopN for secretion. Finally, it was demonstrated that the SycN/YscB chaperone is dispensable for the regulation of secretion if the expression of both YopN and TyeA is increased, indicating that these chaperones have no direct role in the regulation of Yop secretion. These results indicate that the YopN secretion signal and SycN/YscB chaperone function to efficiently target the YopN/TyeA complex to the T3S apparatus, whereas the YopN CBD and C-terminal region of YopN complexed with TyeA mediate the block in Yop secretion.
3

Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepacia

Engledow, Amanda Suzanne 02 June 2009 (has links)
Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby playing an important role in the pathogenesis of infection and plasticity of genomes. Burkholderia cenocepacia is an important opportunistic human pathogen, particularly in persons with cystic fibrosis (CF). Respiratory tract infection by B. cenocepacia in CF patients is often associated with a decline in respiratory function, and can result in acute systemic infection. Burkholderia cenocepacia strain K56-2 is part of the epidemic and clinically problematic ET12 lineage. Two type IV secretion systems have been identified in this strain; one system is plasmid encoded (designated the Ptw type IV secretion system) whereas the other is chromosomally encoded (designated the VirB/D type IV secretion system) and shows homology to the Agrobacterium tumefaciens VirB/D4 type IV secretion system. It was determined that the plasmid encoded Ptw system is a chimeric type IV secretion system composed of VirB/D4-like elements and F-specific subunits. More recently, it was found that this system translocates a protein effector (PtwE1) that is cytotoxic to plant cells. It was also determined that the positively charged C-terminal region of PtwE1 is important for translocation via the Ptw type IV secretion system. Strains of the epidemic B. cenocepacia PHDC lineage contain only a chromosomal VirB/D4-like type IV secretion system (designated BcVirB/D); and a putative effector protein associated with this system has been identified that has C-terminal transport signal and sequences different from the effectors of the Ptw type IV secretion system. It has also been shown that a competing plasmid substrate and a plasmid fertility inhibition factor act to render B. cenocepacia of the PHDC lineage incapable of expressing a plant phenotype. Thus, three type IV secretion systems have been identified in epidemic B. cenocepacia lineages. From two of these, an effector has been identified that has cytotoxic effects on eukaryotic cells, and at least one of these type IV secretion systems is able to translocate DNA substrates.
4

Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepacia

Engledow, Amanda Suzanne 02 June 2009 (has links)
Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby playing an important role in the pathogenesis of infection and plasticity of genomes. Burkholderia cenocepacia is an important opportunistic human pathogen, particularly in persons with cystic fibrosis (CF). Respiratory tract infection by B. cenocepacia in CF patients is often associated with a decline in respiratory function, and can result in acute systemic infection. Burkholderia cenocepacia strain K56-2 is part of the epidemic and clinically problematic ET12 lineage. Two type IV secretion systems have been identified in this strain; one system is plasmid encoded (designated the Ptw type IV secretion system) whereas the other is chromosomally encoded (designated the VirB/D type IV secretion system) and shows homology to the Agrobacterium tumefaciens VirB/D4 type IV secretion system. It was determined that the plasmid encoded Ptw system is a chimeric type IV secretion system composed of VirB/D4-like elements and F-specific subunits. More recently, it was found that this system translocates a protein effector (PtwE1) that is cytotoxic to plant cells. It was also determined that the positively charged C-terminal region of PtwE1 is important for translocation via the Ptw type IV secretion system. Strains of the epidemic B. cenocepacia PHDC lineage contain only a chromosomal VirB/D4-like type IV secretion system (designated BcVirB/D); and a putative effector protein associated with this system has been identified that has C-terminal transport signal and sequences different from the effectors of the Ptw type IV secretion system. It has also been shown that a competing plasmid substrate and a plasmid fertility inhibition factor act to render B. cenocepacia of the PHDC lineage incapable of expressing a plant phenotype. Thus, three type IV secretion systems have been identified in epidemic B. cenocepacia lineages. From two of these, an effector has been identified that has cytotoxic effects on eukaryotic cells, and at least one of these type IV secretion systems is able to translocate DNA substrates.
5

Development of an AMP-SECreting Platform in E. coli for Simpler AMP Development (AMPSEC)

Tomaro, Kyle 20 July 2022 (has links)
In the global fight against antibiotic resistance, the need for alternatives is more pressing than ever. Antimicrobial peptides (AMPs), short oligopeptides usually produced as part of the immune system of a host, have shown great promise against resistant bacteria, biofilms and even cancer cells. Engineering AMPs that are both specific to a set of bacteria and stable is among the main challenges of the field. Herein, we propose two separate tools to support these efforts. The first one is an AMP SECretion system based in E. coli, dubbed AMPSEC, that can be used to produce active AMPs with specific targets (i.e., gram-positive bacteria or any specific specie). This recombinant protein system uses surface display technologies coupled with specific protease activity to express, export, and release functional AMPs that could readily affect neighbouring target bacteria. The AMPSEC would be ideal to screen AMP libraries, removing the need for purification or chemical synthesis in order to observe toxicity. It could also be used for AMP production, where the secreted AMPs would be purified from the growth medium by HPLC. Finally, if the recombinant system is inserted in a probiotic host, it might even be useful to deliver AMPs in the gut to treat dysbiosis. Herein, we explored six surface display apparatuses for their applicability for AMPSEC and found three out of the six being fully functional in transporting the cargo although the cleaving activity needs to be coordinated better with its localization at the outer membrane. A robust proof-of-concept workflow has also been established and used to evaluate the performance of those six display apparatuses. The second is a bioinformatics approach to highlighting the relationship between the primary structure and the microbial target specificity of AMPs. Our method first clusters sequences from the DRAMP AMP repository using the Linclust algorithm. De novo motif discovery tools can then extract AMP sequence motifs relating to target specificity. These motifs could guide randomized sequence AMP library creation and decrease the number of inactive sequences generated. Clustering AMPs, however, proved to be rather challenging due to the large sequence length variation in the databases, the small sample size and their overall short lengths. It would then be necessary to design an algorithm suited to handle this specific kind of proteomics dataset. A library eventually created using the discovered motifs could then be used with AMPSEC. Combined, these two tools will further improve our ability to design stable AMPs targeting specific bacteria.
6

Secretion of the chitinolytic machinery in Serratia marcescens

Hamilton, Jaeger January 2013 (has links)
There are six known secretion systems in Gram negative bacteria, referred to as Type 1 to Type 6 respectively, which are dedicated to moving substrate across the outer membrane. Secretion systems are broadly separated into those that move their substrate across the cell envelope in a single translocation event (one-step systems), and those that are dependent on the Sec or Tat machineries for export to the periplasm (two-step systems). Serratia marcescens is an important opportunistic human pathogen and has gathered a lot of interest due to its repertoire of secreted proteins. These include the haem-scavenging protein HasA, which is secreted by a Type 1 secretion system, and the cytotoxic haemolysin ShlA, which is secreted as part of a two-partner Type 5 secretion system. Serratia marcescens also encodes a Type 6 secretion system, which is known to translocate at least six effector molecules directly into other bacterial target cells. Serratia marcescens is a model organism in terms of its ability to degrade the quite intractable polymer chitin, for which it produces three chitinase enzymes ChiA, ChiB, ChiC and a chitin-binding protein Cbp21, which hydrolyse the ß-1,4 link in the chitin chain and promote binding of chitinase to the chitin substrate respectively. These chitinolytic enzymes are utilised by S. marcescens for both basic physiology and also in pathogenesis. In this work, genetic, biochemical and proteomic approaches identified, for the first time, genes that are essential for the secretion of all three chitinases as well as Cbp21. A genetic screen identified genes encoding a holin-like membrane protein (ChiW) and a putative L-alanyl-D-glutamate endopeptidase (ChiX). Subsequent quantitative proteomics experiments and biochemical analyses established that ChiW and ChiX were required for secretion of the entire chitinolytic machinery. Chitinase secretion was observed to be blocked at a late stage in the mutant strains as normally secreted enzymes were found to accumulate in the periplasm, thus implicating ChiW and ChiX in a novel outer membrane protein translocation process. It is proposed that the bacterial genome-encoded holin-like protein and endopeptidase identified represent a putative secretion system utilised by Gram-negative bacteria. In addition to this, genes encoding the chitinolytic machinery and the putative secretion apparatus were shown to be bimodally regulated and co-ordinately expressed.
7

Infection biology of Chlamydia pneumoniae

Bailey, Leslie January 2008 (has links)
There are two main human pathogens in the family of Chlamydiaceae. Different serovars of Chlamydia trachomatis cause sexually-transmitted disease and eye infections whereas C. pneumoniae (TWAR) is a common cause of community-acquired respiratory infection. Chlamydia species are obligate, intracellular bacteria sharing a unique developmental cycle that occurs within a protected vacuole termed an inclusion. These microorganisms can be distinguished by two different forms: the infectious, metabolically inert elementary body (EB) and the reproducing non-infectious form, termed the reticulate body (RB). The cycle is terminated when re-differentiation of RBs back to infectious EBs occurs. Chlamydia possesses a type III secretion system (T3SS) essential for delivery of effector proteins into the host for host-cell interactions. This virulence system has been systematically characterized in several mammalian pathogens. Due to lack of a tractable genetic system for Chlamydia species, we have employed chemical genetics as a strategy to investigate molecular aspects of the T3SS. We have identified that the T3S-inhibitors INP0010 and INP0400 block the developmental cycle and interfere with secretion of T3S effector proteins in C. pneumoniae and C. trachomatis, without any cytotoxic effect. We have further shown that INP0010 decreases initiation of transcription in C. pneumoniae during the early mid-developmental cycle as demonstrated by a novel calculation, useful for measurement of transcription initiation in any intracellular pathogen. The mechanism regulating the signal(s) for primary as well as terminal differentiation of RBs has not been defined in Chlamydia. We show using T3S-inhibitors that INP0010 targets the T3SS and thereby arrests RB proliferation as well as RB to EB re-differentiation of C. pneumoniae as where INP0400 targets the T3SS and provokes a bacterial dissociation from the inclusion membrane presumed to mimic the natural occurrence of terminal differentiation. The effect of INP0010 on iron-responsive genes indicates a role for T3S in iron acquisition. Accordingly, our results suggest the possibility that C. pneumoniae acquires iron via the intracellular trafficking pathway of endocytosed transferrin. Moreover, we have for the first time presented data showing generalized bone loss from C. pneumoniae infection in mice. The infection was associated with increased levels of the bone resorptive cytokines IL-6 and IL-1beta. In addition, an increased sub-population of T-cells expressed RANKL during infection. Additionally, C. pneumoniae established an infection in a human osteoblast cell line in vitro with a similar cytokine profile as seen in vivo, supporting a causal linkage. Collectively, these data may indicate a previously unknown pathological role of C. pneumoniae in generalized bone loss.
8

Structural characterization of the type II secretion system of Aeromonas hydrophila

2012 April 1900 (has links)
The exeC gene, found in the gram-negative bacteria Aeromonas hydrophila codes for a 31 kDa, three domain, bitopic inner membrane protein. The components of the ExeC protein include an amino-terminal cytoplasmic domain, a trans-membrane helix and two periplasmic domains. The two periplasmic domains are involved in recognition and selection of protein substrates which are subsequently transported across the outer membrane and free of the cell. This study focuses exclusively on the two periplasmic domains referred to hereafter as the HR and the PDZ domains. Three constructs were used throughout the course of this study. Two of them were designed, cloned and expressed for this study. The third is a result of previous work. Two constructs contained both the HR and PDZ domains while the other consists of the amino-terminal periplasmic HR domain. Only one construct was used to grow single crystals for analysis by X-ray crystallography. Crystals comprised of the PDZ domain from a degraded construct grew in a hexagonal space group with a hexagonal bi-pyramidal morphology. Crystals diffracted anisotropically to a maximum resolutions of 2 Å along the c axis and 3 Å in the a/b plane. Anisotropy in combination with twinning drastically complicated structure solution. Efforts toward elucidating the crystal structure will be discussed.
9

Characterization of a Novel Promoter Region for the Enteropathogenic Escherichia coli Type III Secretion System Chaperone Gene cesT

Brouwers, Erin 05 December 2011 (has links)
Enteropathogenic Escherichia coli (EPEC) is an enteric pathogen that causes potentially fatal infantile diarrhea. A type III secretion system is employed by EPEC to inject bacterial effector proteins directly into host intestinal epithelial cells. The multivalent chaperone, CesT, interacts with nine effectors and is a significant contributor to EPEC pathogenesis. A putative transcriptional promoter region was identified directly upstream of cesT. In silico analyses identified conserved elements that suggest the cesT promoter is recognized by ?70. Using transcriptional fusions to lux reporter genes I showed that the cesT promoter region is active under conditions known to induce virulence-gene expression. I conclude that the cesT promoter is active early during an in vitro assay, and regulated by different mechanisms than those affecting the Ptir operon promoter.
10

Investigation of enterotoxigenic Escherichia coli (ETEC) vaccine candidates and identification of inhibitor of enterohemorrhagic Escherichia coli (EHEC) Type III secretion system effector NleB

Yang, Yang January 1900 (has links)
Master of Science in Biomedical Sciences / Department of Diagnostic Medicine/Pathobiology / Philip R. Hardwidge / Enterotoxigenic Escherichia coli (ETEC) is the most common cause of diarrhea in travellers and young children in developing countries. We previously characterized three vaccine candidates (MipA, Skp, and ETEC_2479) which effectively protected mice in an intranasal ETEC challenge model after immunization. However, these proteins are conserved not only in multiple ETEC isolates, but also in commensal bacteria. In this study, we examined the potential of these antigens to affect the host intestinal microbiota and subsequently found no significant impact on healthy of host after vaccination. In addition, we also optimized the types of adjuvants and forms of antigens and evaluated the efficacy in a mouse intranasal challenge model. Enterohemorrhagic Escherichia coli (EHEC) is an emerging zoonotic pathogen that cause global public health threads. EHEC possesses the potential to cause gastroenteritis, hemorrhagic colitis and hemolytic uremic syndrome (HUS), which may lead to renal failure. Type III secretion system (T3SS) is a hallmark of EHEC, characterized by the needle-like structure and a variety of effectors injected into host cells. NleB, one of T3SS effectors, is a glycosyltransferase with the ability to catalyze the transfer of N-acetyl-D-glucosamine (N-GlcNAc) to host proteins to suppress the activation of NF-kB signaling pathway. In this study, we employed luminescence-based glycosyltransferase assay and high-throughput screening using a chemical library of various compounds. A total of 128 chemicals was selected with significant inhibition on NleB glycosyltransferase activity for further pharmaceutical study as novel therapy against EHEC infection.

Page generated in 0.1033 seconds