• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribuição da segmentação de dados para a decisão de concessão de crédito ao consumidor: uma comparação de resultados / Contribution of targeting data to the decision to grant credit to consumers: a comparison of results

Borges, Vanessa Anelli 04 November 2011 (has links)
Este trabalho explora a contribuição da segmentação de dados, manual e estatística, combinada com análise discriminante e com redes neurais, para a tomada de decisão de concessão de crédito ao consumidor. A grande importância que a decisão de concessão de crédito tem para o mercado varejista e para a área de controladoria de uma empresa dão cenário para o aumento da relevância do gerenciamento do risco de crédito. O mercado necessita, cada vez mais, de modelos capazes de produzir boas expectativas do comportamento dos clientes, com vistas de reduzir perdas com inadimplência. Dado um banco de dados composto por 50 mil clientes de uma importante loja do setor varejista, primeiro aplica-se a análise discriminante, depois as redes neurais, para que se classifique a capacidade preditiva de cada técnica nesta etapa. Posteriormente, os dados são segmentados com base na região à qual a filial de venda pertence e, depois, por meio das análises de clusters K-Means e TwoStep Cluster. A próxima etapa compreende a aplicação da análise discriminante, depois das redes neurais, para cada um dos grupos formados, tanto pela segregação por região, quanto pela segregação por meio das técnicas de análise de clusters. A última etapa abrange a comparação da soma dos acertos dos bons e dos maus pagadores obtida tanto para análise discriminante, quanto para redes neurais, combinadas com a segmentação de dados, com os resultados obtidos na primeira etapa sem a segmentação dos dados. O modelo híbrido que combina a segmentação manual dos dados com análise discriminante e com redes neurais, formando-se 21 micro-regiões foi o que apresentou maiores porcentagens de acerto de classificação. O modelo híbrido que combina análise discriminante e redes neurais com a análise de clusters TwoStep Cluster não apresenta resultados de classificação adequados à proposta deste trabalho, devendo, portanto, ser descartado. / This paper explores the contribution of data segmentation, and statistical manual, combined with discriminant analysis and neural networks, for making the decision to grant credit to consumers. The great importance that the decision to grant credit is for the retail market and the area of controlling a business scenario to give increasing importance of managing credit risk. The market needs, increasingly, models capable of producing good expectations of customer behavior, in order to reduce losses from default. Given a database consisting of 50 000 customers of a major retail store, the first applies to discriminant analysis, then the neural networks, in order to classify the predictive ability of each technique in this step. Subsequently, the data are segmented based on the region to which the branch belongs to sell and then through the analysis of clusters K-Means and TwoStep Cluster. The next step involves the application of discriminant analysis, neural networks then, for each of the groups formed by both the segregation by region, by segregation and by the techniques of cluster analysis. The last step includes comparing the sum of the hits of the good and bad debtors obtained for both discriminant analysis and neural networks, combined with the segmentation of data, with the results obtained in the first stage - without the segmentation of the data. The hybrid model that combines the manual segmentation of the data with discriminant analysis and neural networks, forming 21 micro-regions showed the highest percentage of correct classification. The hybrid model that combines neural networks and discriminant analysis with cluster analysis results TwoStep Cluster does not have appropriate rating to the proposal of this work and should therefore be discarded.
2

Contribuição da segmentação de dados para a decisão de concessão de crédito ao consumidor: uma comparação de resultados / Contribution of targeting data to the decision to grant credit to consumers: a comparison of results

Vanessa Anelli Borges 04 November 2011 (has links)
Este trabalho explora a contribuição da segmentação de dados, manual e estatística, combinada com análise discriminante e com redes neurais, para a tomada de decisão de concessão de crédito ao consumidor. A grande importância que a decisão de concessão de crédito tem para o mercado varejista e para a área de controladoria de uma empresa dão cenário para o aumento da relevância do gerenciamento do risco de crédito. O mercado necessita, cada vez mais, de modelos capazes de produzir boas expectativas do comportamento dos clientes, com vistas de reduzir perdas com inadimplência. Dado um banco de dados composto por 50 mil clientes de uma importante loja do setor varejista, primeiro aplica-se a análise discriminante, depois as redes neurais, para que se classifique a capacidade preditiva de cada técnica nesta etapa. Posteriormente, os dados são segmentados com base na região à qual a filial de venda pertence e, depois, por meio das análises de clusters K-Means e TwoStep Cluster. A próxima etapa compreende a aplicação da análise discriminante, depois das redes neurais, para cada um dos grupos formados, tanto pela segregação por região, quanto pela segregação por meio das técnicas de análise de clusters. A última etapa abrange a comparação da soma dos acertos dos bons e dos maus pagadores obtida tanto para análise discriminante, quanto para redes neurais, combinadas com a segmentação de dados, com os resultados obtidos na primeira etapa sem a segmentação dos dados. O modelo híbrido que combina a segmentação manual dos dados com análise discriminante e com redes neurais, formando-se 21 micro-regiões foi o que apresentou maiores porcentagens de acerto de classificação. O modelo híbrido que combina análise discriminante e redes neurais com a análise de clusters TwoStep Cluster não apresenta resultados de classificação adequados à proposta deste trabalho, devendo, portanto, ser descartado. / This paper explores the contribution of data segmentation, and statistical manual, combined with discriminant analysis and neural networks, for making the decision to grant credit to consumers. The great importance that the decision to grant credit is for the retail market and the area of controlling a business scenario to give increasing importance of managing credit risk. The market needs, increasingly, models capable of producing good expectations of customer behavior, in order to reduce losses from default. Given a database consisting of 50 000 customers of a major retail store, the first applies to discriminant analysis, then the neural networks, in order to classify the predictive ability of each technique in this step. Subsequently, the data are segmented based on the region to which the branch belongs to sell and then through the analysis of clusters K-Means and TwoStep Cluster. The next step involves the application of discriminant analysis, neural networks then, for each of the groups formed by both the segregation by region, by segregation and by the techniques of cluster analysis. The last step includes comparing the sum of the hits of the good and bad debtors obtained for both discriminant analysis and neural networks, combined with the segmentation of data, with the results obtained in the first stage - without the segmentation of the data. The hybrid model that combines the manual segmentation of the data with discriminant analysis and neural networks, forming 21 micro-regions showed the highest percentage of correct classification. The hybrid model that combines neural networks and discriminant analysis with cluster analysis results TwoStep Cluster does not have appropriate rating to the proposal of this work and should therefore be discarded.

Page generated in 0.1062 seconds