• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo / Semiautomatic segmentation of left ventricle in full sets of cardiac images

Torres, Rafael Siqueira 05 April 2017 (has links)
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia / The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
2

Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo / Semiautomatic segmentation of left ventricle in full sets of cardiac images

Rafael Siqueira Torres 05 April 2017 (has links)
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia / The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
3

Segmentação dos nódulos pulmonares através de interações baseadas em gestos / Segmentation of pulmonary nodules through interactions based on in gestures

SOUSA, Héber de Padua 29 January 2013 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-16T21:13:39Z No. of bitstreams: 1 HeberSousa.pdf: 2248069 bytes, checksum: e89eac1d4562ac1f2f53007d699f9c71 (MD5) / Made available in DSpace on 2017-08-16T21:13:39Z (GMT). No. of bitstreams: 1 HeberSousa.pdf: 2248069 bytes, checksum: e89eac1d4562ac1f2f53007d699f9c71 (MD5) Previous issue date: 2013-01-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Lung cancer is one of the most common of malignant tumors. It also has one of the highest rates of mortality among cancers. The reason for this is mainly linked to late diagnosis of the disease. For early detection of disease is very helpful to use medical images as support, the most important being, CT. With the acquisition of digital images is becoming more common to use computer systems for medical imaging. These systems assist in the clinical diagnosis, disease monitoring, and in some cases is used as a support for surgery. Because the search for new ways of human-computer interaction, natural interaction arises, which aims to provide a form of control with higher cognition. This control is usually performed using gestures. Interactions of gestures can be useful in controlling medical imaging systems and can ensure necessary sterility in operating rooms, because they are not required contacts manuals. Among the activities computer assisted important for the treatment of lung cancer, we have the segmentation of nodules. The segmentation of nodules can be performed automatically, semiautomatically or interactively. It is useful to speed up the diagnostic process, taking measurements, or observe the morphological appearance of the nodule. The objective of this study is to investigate the use of natural interaction interface for activities such as medical image visualization and segmentation of pulmonary nodules. The paper proposes the study of interaction techniques based on gestures to segment nodules in an interactive and semiautomatic. Finally, conducting experiments to evaluate the techniques proposed in the items ease of use, intuitiveness, accuracy and comfortability / O câncer de pulmão é um dos mais comuns dentre os tumores malignos. Ele também possui uma das taxas mais altas de mortalidade dentre os tipos de câncer. O motivo disso está ligado principalmente ao diagnóstico tardio da doença. Para a sua detecção precoce é muito útil a utilização de imagens médicas como apoio, sendo a mais importante, a tomografia computadorizada. Com a aquisição digital das imagens está cada vez mais comum a utilização de sistemas computacionais de visualização médica. Estes sistemas auxiliam no diagnóstico clínico, no acompanhamento de doenças, e em alguns casos é utilizado como apoio a cirurgias. Em virtude da busca por novos meios de interação humano-computador, surge a interação natural, que objetiva uma forma de controle mais próximo cognitivamente das ações realizadas, e geralmente é realizada através de gestos. Interações por gestos podem ser úteis no controle de sistemas de visualização médica e podem garantir a esterilização necessária em salas cirúrgicas, pois não são necessários contatos manuais. Dentre as atividades assistidas por computador importantes para o tratamento do câncer pulmonar, temos a segmentação de nódulos. A segmentação de nódulos pode ser realizada de forma automática, semiautomática ou interativamente. Elas são úteis para agilizar o processo de diagnóstico, realizar medições, ou observar o aspecto morfológico do nódulo. O objetivo do presente trabalho é investigar a utilização da interação natural como interface para atividades de visualização de imagens médicas e segmentação de nódulos pulmonares. Foi implementada uma série de ferramentas de segmentação, interativas e semiautomáticas, controladas a partir de gestos. Estes gestos foram desenvolvidos a partir de imagens capturadas por uma câmera especial chamada Kinect, que traduz a imagem em mapas de profundidade, podendo medir com precisão a distância de objetos na cena. Ao final do estudo, foi realizado experimentos para avaliar as técnicas propostas nos quesitos facilidade de uso, intuitividade, conforto e precisão.

Page generated in 0.0999 seconds