• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vascular plaque detection using texture based segmentation of optical coherence tomography images

Ocaña Macias Mariano 14 September 2015 (has links)
Abstract Cardiovascular disease is one of the leading causes of death in Canada. Atherosclerosis is considered the primary cause for cardiovascular disease. Optical coherence tomography (OCT) provides a means to minimally invasive imaging and assessment of textural features of atherosclerotic plaque. However, detecting atherosclerotic plaque by visual inspection from Optical Coherence Tomography (OCT) images is usually difficult. Therefore we developed unsupervised segmentation algorithms to automatically detect atherosclerosis plaque from OCT images. We used three different clustering methods to identify atherosclerotic plaque automatically from OCT images. Our method involves data preprocessing of raw OCT images, feature selection and texture feature extraction using the Spatial Gray Level Dependence Matrix method (SGLDM), and the application of three different clustering techniques: K-means, Fuzzy C-means and Gustafson-Kessel algorithms to segment the plaque regions from OCT images and to map the cluster regions (background, vascular tissue, OCT degraded signal region and Atherosclerosis plaque) from the feature-space back to the original preprocessed OCT image. We validated our results by comparing our segmented OCT images with actual photographic images of vascular tissue with plaque. / October 2015

Page generated in 0.134 seconds