1 |
Spectral recomposition and multicomponent seismic image registrationCai, Yihua, 1978- 20 July 2012 (has links)
Spectral recomposition splits a seismic spectrum into Ricker components. It provides a tool
for imaging and mapping temporal bed thicknesses and geologic discontinuities. I propose an application of separable, nonlinear, least-squares estimation in spectral recomposition. Employing the
Gauss-Newton method, this approach estimates fundamental signal parameters such as peak frequencies and amplitudes. I applied spectral recomposition to multicomponent seismic data, which provides new perspectives of seismic attributes and multicomponent data interpretation. Correlating
S-wave reflection with P -wave reflection is one of the very first steps in multicomponent data interpretation. In a given stratigraphic interval of a geologic section, registration correlates P and S-wave
profiles to determine ts /tp ratios, which are equivalent to Vp /Vs ratios for vertical propagation paths. The registration process is largely driven by the availability of dipole sonic logs. However, dipole sonic logs are not as common as standard sonic logs and tend to be affected by various borehole factors. Therefore, new techniques are needed for accurate P P and P S correlation and registration.
Assuming P P and P S reflection events have been correctly positioned laterally in migrated images, and the difference between P P wave image and P S wave image can be explained only by vertical transformation, I adopt a multistep approach to register PP and PS images automatically. Setting PP time as a coordinate system, I was able to squeeze P S traces accordingly while keeping the
signal pattern of P S wave data. Local seismic attributes, such as the local similarity, help improve registration accuracy. / text
|
2 |
λ-connectedness and its application to image segmentation, recognition and reconstructionChen, Li January 2001 (has links)
Seismic layer segmentation, oil-gas boundary surfaces recognition, and 3D volume data reconstruction are three important tasks in three-dimensional seismic image processing. Geophysical and geological parameters and properties have been known to exhibit progressive changes in a layer. However, there are also times when sudden changes can occur between two layers. λ-connectedness was proposed to describe such a phenomenon. Based on graph theory, λ-connectedness describes the relationship among pixels in an image. It is proved that λ-connectedness is an equivalence relation. That is, it can be used to partition an image into different classes and hence can be used to perform image segmentation. Using the random graph theory and λ-connectivity of the image, the length of the path in a λ-connected set can be estimated. In addition to this, the normal λ-connected subsets preserve every path that is λ-connected in the subsets. An O(nlogn) time algorithm is designed for the normal λ-connected segmentation. Techniques developed are used to find objects in 2D/3D seismic images. Finding the interface between two layers or finding the boundary surfaces of an oil-gas reserve is often asked. This is equivalent to finding out whether a λ-connected set is an interface or surface. The problem that is raised is how to recognize a surface in digital spaces. λ-connectedness is a natural and intuitive way for describing digital surfaces and digital manifolds. Fast algorithms are designed to recognize whether an arbitrary set is a digital surface. Furthermore, the classification theorem of simple surface points is deduced: there are only six classes of simple surface points in 3D digital spaces. Our definition has been proved to be equivalent to Morgenthaler-Rosenfeld's definition of digital surfaces in direct adjacency. Reconstruction of a surface and data volume is important to the seismic data processing. Given a set of guiding pixels, the problem of generating a λ-connected (subset of image) surface is an inverted problem of λ-connected segmentation. In order to simplify the fitting algorithm, gradual variation, an equivalent concept of λ-connectedness, is used to preserve the continuity of the fitted surface. The key theorem, the necessary and sufficient condition for the gradually varied interpolation, has been mathematically proven. A random gradually varied surface fitting is designed, and other theoretical aspects are investigated. The concepts are used to successfully reconstruct 3D seismic real data volumes. This thesis proposes λ-connectedness and its applications as applied to seismic data processing. It is used for other problems such as ionogram scaling and object tracking. It has the potential to become a general technique in image processing and computer vision applications. Concepts and knowledge from several areas in mathematics such as Set Theory, Fuzzy Set Theory, Graph Theory, Numerical Analysis, Topology, Discrete Geometry, Computational Complexity, and Algorithm Design and Analysis have been applied to the work of this thesis.
|
3 |
Étude d’algorithmes de restauration d’images sismiques par optimisation de forme non linéaire et application à la reconstruction sédimentaire. / Seismic images restoration using non linear optimization and application to the sedimentary reconstruction.Gilardet, Mathieu 19 December 2013 (has links)
Nous présentons une nouvelle méthode pour la restauration d'images sismiques. Quand on l'observe, une image sismique est le résultat d'un système de dépôt initial qui a été transformé par un ensemble de déformations géologiques successives (flexions, glissement de la faille, etc) qui se sont produites sur une grande période de temps. L'objectif de la restauration sismique consiste à inverser les déformations pour fournir une image résultante qui représente le système de dépôt géologique tel qu'il était dans un état antérieur. Classiquement, ce procédé permet de tester la cohérence des hypothèses d'interprétations formulées par les géophysiciens sur les images initiales. Dans notre contribution, nous fournissons un outil qui permet de générer rapidement des images restaurées et qui aide donc les géophysiciens à reconnaître et identifier les caractéristiques géologiques qui peuvent être très fortement modifiées et donc difficilement identifiables dans l'image observée d'origine. Cette application permet alors d'assister ces géophysiciens pour la formulation d'hypothèses d'interprétation des images sismiques. L'approche que nous introduisons est basée sur un processus de minimisation qui exprime les déformations géologiques en termes de contraintes géométriques. Nous utilisons une approche itérative de Gauss-Newton qui converge rapidement pour résoudre le système. Dans une deuxième partie de notre travail nous montrons différents résultats obtenus dans des cas concrets afin d'illustrer le processus de restauration d'image sismique sur des données réelles et de montrer comment la version restaurée peut être utilisée dans un cadre d'interprétation géologique. / We present a new method for seismic image restoration. When observed, a seismic image is the result of an initial deposit system that has been transformed by a set of successive geological deformations (folding, fault slip, etc) that occurred over a large period of time. The goal of seismic restoration consists in inverting the deformations to provide a resulting image that depicts the geological deposit system as it was in a previous state. With our contribution, providing a tool that quickly generates restored images helps the geophysicists to recognize geological features that may be too strongly altered in the observed image. The proposed approach is based on a minimization process that expresses geological deformations in terms of geometrical constraints. We use a quickly-converging Gauss-Newton approach to solve the system. We provide results to illustrate the seismic image restoration process on real data and present how the restored version can be used in a geological interpretation framework.
|
4 |
Rehaussement et détection des attributs sismiques 3D par techniques avancées d'analyse d'images / 3D Seismic Attributes Enhancement and Detection by Advanced Technology of Image AnalysisLi, Gengxiang 19 April 2012 (has links)
Les Moments ont été largement utilisés dans la reconnaissance de formes et dans le traitement d'image. Dans cette thèse, nous concentrons notre attention sur les 3D moments orthogonaux de Gauss-Hermite, les moments invariants 2D et 3D de Gauss-Hermite, l'algorithme rapide de l'attribut de cohérence et les applications de l'interprétation sismique en utilisant la méthode des moments.Nous étudions les méthodes de suivi automatique d'horizon sismique à partir de moments de Gauss-Hermite en cas de 1D et de 3D. Nous introduisons une approche basée sur une étude multi-échelle des moments invariants. Les résultats expérimentaux montrent que la méthode des moments 3D de Gauss-Hermite est plus performante que les autres algorithmes populaires.Nous avons également abordé l'analyse des faciès sismiques basée sur les caractéristiques du vecteur à partir des moments 3D de Gauss -Hermite, et la méthode de Cartes Auto-organisatrices avec techniques de visualisation de données. L'excellent résultat de l'analyse des faciès montre que l'environnement intégré donne une meilleure performance dans l'interprétation de la structure des clusters.Enfin, nous introduisons le traitement parallèle et la visualisation de volume. En profitant des nouvelles performances par les technologies multi-threading et multi-cœurs dans le traitement et l'interprétation de données sismiques, nous calculons efficacement des attributs sismiques et nous suivons l'horizon. Nous discutons également l'algorithme de rendu de volume basé sur le moteur Open-Scene-Graph qui permet de mieux comprendre la structure de données sismiques. / Moments have been extensively used in pattern recognition and image processing. In this thesis, we focus our attention on the study of 3D orthogonal Gaussian-Hermite moments, 2D and 3D Gaussian-Hermite moment invariants, fast algorithm of coherency attribute, and applications of seismic interpretation using moments methodology.We conduct seismic horizon auto-tracking methods from Gaussian-Hermite moments and moment invariants. We introduce multi-scale moment invariants approach. The experimental results show that method of 3D Gaussian-Hermite moments performs better than the most popular methods.We also approach seismic facies analysis based on feature vectors from 3D Gaussian-Hermite moments, and Self-Organizing Maps method with data visualization techniques. The excellent result shows that the integrated environment gives the best performance in interpreting the correct cluster structure.Finally, we introduce the parallel processing and volume visualization. Taking advantage of new performances by multi-threading and multi-cores technologies into seismic interpretation, we efficiently compute the seismic attributes and track the horizon. We also discuss volume rendering algorithm based on Open-Scene-Graph engine which provides better insight into the structure of seismic data.
|
Page generated in 0.056 seconds