• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 14
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 229
  • 229
  • 42
  • 34
  • 26
  • 25
  • 25
  • 23
  • 23
  • 23
  • 22
  • 21
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Investigation of Pn wave propagation in Oregon

Ganoe, Steven J. 20 October 1982 (has links)
Graduation date: 1983 / Best scan available for figures.

A focal mechanism study using both P-wave first motions and S-wave polarization angles

Smith, Gordon Egbert 08 1900 (has links)
No description available.

A velocity-tracking filter for improved estimation of seismic signals

Letton, Winsor 08 1900 (has links)
No description available.

Wavelet estimation and debubbling using minimum entropy deconvolution and time domain linear inverse methods

Levy, Shlomo January 1979 (has links)
A new and different approach to the solution of the normal equations of minimum entropy deconvolution (MED) is developed. This approach which uses singular value decomposition in the iterative solution of the MED equations increases the signal-to-noise ratio of the deconvolved output and enhances the resolution of MEC. The problem of deconvolution, and in particular wavelet estimation, is formulated as a linear inverse problem. Both generalized linear inverse methods and Backus-Gilbert inversion are considered. The proposed wavelet estimation algorithm uses the MED output as a first approximation to the earth response. The approximated response and the observed seismograms serve as an input to the inversion schemes and the outputs are the estimated wavelets. The remarkable performance of the linear inverse schemes for cases of highly noisy data is demonstrated. A debubbling example is used to show the completeness of the linear inverse schemes. First the wavelet estimation part was carried out and then the debubbling problem was formulated as a generalized linear inverse problem which was solved using the estimated wavelet. This work demonstrates the power of the linear inverse schemes when dealing with highly noisy data. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Teleseismic array analysis of upper mantle compressional velocity structure

Walck, Marianne C. January 1984 (has links)
Thesis (Ph. D.)--California Institute of Technology, 1984. / Includes bibliographical references (leaves 213-230).

Correlation of P-wave velocity and weathered

Lam, Wan, 林蘊 January 2004 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science

Bent-ray travel-time tomography and migration without ray tracing

Ecoublet, Philippe January 1995 (has links)
No description available.

Boundary element modelling of scattering topographical structures with applications to the Mexico City valley

Reinoso, Eduardo January 1994 (has links)
No description available.

Analysis of seismic anisotropy in 3D multi-component seismic data

Qian, Zhongping January 2010 (has links)
The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been keenly pursued since then. However, a lot of problems remain, which have limited the applications of the technology. Nowadays, more and more 3D multi-component seismic data with wide-azimuth are becoming available. These have provided more opportunities for the study of seismic anisotropy. My thesis has focused on the study of using seismic anisotropy in 3D multi-component seismic data to characterize subsurface fractures, improve converted wave imaging and detect fluid content in fractured reservoirs, all of which are important for fractured reservoir exploration and monitoring. For the use of seismic anisotropy to characterize subsurface fracture systems, equivalent medium theories have established the link between seismic anisotropy and fracture properties. The numerical modelling in the thesis reveals that the amplitudes and interval travel-time of the radial component of PS converted waves can be used to derive fracture properties through elliptical fitting similar to P-waves. However, sufficient offset coverage is required for either the P- or PS-wave to reveal the features of elliptical variation with azimuth. Compared with numerical modelling, seismic physical modelling provides additional insights into the azimuthal variation of P and PS-wave attributes and their links with fracture properties. Analysis of the seismic physical model data in the thesis shows that the ratio of the offset to the depth of a target layer (offset-depth ratio), is a key parameter controlling the choice of suitable attributes and methods for fracture analysis. Data with a small offset-depth ratio from 0.7 to 1.0 may be more suitable for amplitude analysis; whilst the use of travel time or velocity analysis requires a large offset-depth ratio above 1.0, which can help in reducing the effect of the acquisition footprint and structural imprint on the results. Multi-component seismic data is often heavily contaminated with noise, which will limit its application potential in seismic anisotropy analysis. A new method to reduce noise in 3D multi-component seismic data has been developed and has proved to be very helpful in improving data quality. The method can automatically recognize and eliminate strong noise in 3D converted wave seismic data with little interference to useful reflection signals. Component rotation is normally a routine procedure in 3D multi-component seismic analysis. However, this study shows that incorrect rotations may occur for certain acquisition geometry and can lead to errors in shear-wave splitting analysis. A quality control method has been developed to ensure this procedure is correctly carried out. The presence of seismic anisotropy can affect the quality of seismic imaging, but the study has shown that the magnitude of the effects depends on the data type and target depth. The effects of VTI anisotropy (transverse isotropy with a vertical symmetry axis) on P-wave images are much weaker than those on PS-wave images. Anisotropic effects decrease with depth for the P- and PS-waves. The real data example shows that the overall image quality of PS-waves processed by pre-stack time migration has been improved when VTI anisotropy has been taken into account. The improvements are mainly in the upper part of the section. Monitoring fluid distribution is an important task in producing reservoirs. A synthetic study based on a multi-scale rock-physics model shows that it is possible to use seismic anisotropy to derive viscosity information in a HTI medium (transverse isotropy with a horizontal symmetry axis). The numerical modelling demonstrates the effects of fluid viscosity on medium elastic properties and seismic reflectivity, as well as the possibility of using them to discriminate between oil and water saturation. Analysis of real data reveals that it is hard to use the P-wave to discriminate oil-water saturation. However, characteristic shear-wave splitting behaviour due to pore pressure changes demonstrates the potential for discriminating between oil and water saturation in fractured reservoirs.

Parsimonious migration 3-C 3-D VSP migration /

Agnihotri, Yogesh, January 2006 (has links)
Thesis (M.S.) -- University of Texas at Dallas, 2006 / Includes vita. Includes bibliographical references (leaves 24-25)

Page generated in 0.0714 seconds