Spelling suggestions: "subject:"gestaltoptimierung""
1 |
Architecture and Mechanisms of Energy Auto-TuningGötz, Sebastian, Wilke, Claas, Cech, Sebastian, Aßmann, Uwe 21 August 2013 (has links) (PDF)
Energy efficiency of IT infrastructures has been a well-discussed research topic for several decades. The resulting approaches include hardware optimizations, resource management in operating systems, network protocols, and many more. The approach the authors present in this chapter is a self-optimization technique for IT infrastructures, which takes hard- and software components as well as users of software applications into account. It is able to ensure minimal energy consumption for a user request along with a set of non-functional requirements (e.g., the refresh rate of a data extraction tool). To optimize the ratio between utility of end users and the cost in terms of energy consumption, the system needs inherent variability leading to differentiated energy profiles and mechanisms to reconfigure the system at runtime. The authors present their approach called Energy Auto-Tuning (EAT) comprised of these mechanisms and an architecture which automatically tunes the energy efficiency of IT systems.
|
2 |
Towards Energy Auto TuningGötz, Sebastian, Wilke, Claas, Schmidt, Matthias, Cech, Sebastian, Aßmann, Uwe 21 August 2013 (has links) (PDF)
Energy efficiency is gaining more and more importance, since well-known ecological reasons lead to rising energy costs. In consequence, energy consumption is now also an important economical criterion. Energy consumption of single hardware resources has been thoroughly optimized for years. Now software becomes the major target of energy optimization. In this paper we introduce an approach called energy auto tuning(EAT), which optimizes energy efficiency of software systems running on multiple resources. The optimization of more than one resource leads to higher energy savings, because communication costs can be taken into account. E.g., if two components run on the same resource, the communication costs are likely to be less, compared to be running on different resources. The best results can be achieved in heterogeneous environments as different resource characteristics enlarge the synergy effects gainable by our optimization technique. EAT software systems derive all possible distributions of themselves on a given set of hardware resources and reconfigure themselves to achieve the lowest energy consumption possible at any time. In this paper we describe our software architecture to implement EAT.
|
3 |
Architecture and Mechanisms of Energy Auto-TuningGötz, Sebastian, Wilke, Claas, Cech, Sebastian, Aßmann, Uwe January 2012 (has links)
Energy efficiency of IT infrastructures has been a well-discussed research topic for several decades. The resulting approaches include hardware optimizations, resource management in operating systems, network protocols, and many more. The approach the authors present in this chapter is a self-optimization technique for IT infrastructures, which takes hard- and software components as well as users of software applications into account. It is able to ensure minimal energy consumption for a user request along with a set of non-functional requirements (e.g., the refresh rate of a data extraction tool). To optimize the ratio between utility of end users and the cost in terms of energy consumption, the system needs inherent variability leading to differentiated energy profiles and mechanisms to reconfigure the system at runtime. The authors present their approach called Energy Auto-Tuning (EAT) comprised of these mechanisms and an architecture which automatically tunes the energy efficiency of IT systems.
|
4 |
Towards Energy Auto TuningGötz, Sebastian, Wilke, Claas, Schmidt, Matthias, Cech, Sebastian, Aßmann, Uwe January 2010 (has links)
Energy efficiency is gaining more and more importance, since well-known ecological reasons lead to rising energy costs. In consequence, energy consumption is now also an important economical criterion. Energy consumption of single hardware resources has been thoroughly optimized for years. Now software becomes the major target of energy optimization. In this paper we introduce an approach called energy auto tuning(EAT), which optimizes energy efficiency of software systems running on multiple resources. The optimization of more than one resource leads to higher energy savings, because communication costs can be taken into account. E.g., if two components run on the same resource, the communication costs are likely to be less, compared to be running on different resources. The best results can be achieved in heterogeneous environments as different resource characteristics enlarge the synergy effects gainable by our optimization technique. EAT software systems derive all possible distributions of themselves on a given set of hardware resources and reconfigure themselves to achieve the lowest energy consumption possible at any time. In this paper we describe our software architecture to implement EAT.
|
Page generated in 0.0729 seconds