• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algebraické nerovnice nad reálnými čísly / Algebraic inequalities over the real numbers

Raclavský, Marek January 2017 (has links)
This thesis analyses the semialgebraic sets, that is, a finite union of solu- tions to a finite sequence of polynomial inequalities. We introduce a notion of cylindrical algebraic decomposition as a tool for the construction of a semialge- braic stratification and a triangulation of a semialgebraic set. On this basis, we prove several important and well-known results of real algebraic geometry, such as Hardt's semialgebraic triviality or Sard's theorem. Drawing on Morse theory, we finally give a proof of a Thom-Milnor bound for a sum of Betti numbers of a real algebraic set. 1

Page generated in 0.0385 seconds