• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The optimal hydraulic diameter of semicircular and triangular shaped channels for compact heat exchangers / J.C. Venter

Venter, Johann Christiaan January 2010 (has links)
All heat pump cycles have one common feature that connects them to one another; this feature is the presence of a heat exchanger. There are even some heat–driven cycles that are completely composed of heat exchangers, every heat exchanger fulfilling a different, though critical role. The need therefore exists to optimize heat exchangers, more specifically Compact Heat Exchangers (CHE). This study deals with the optimization of such a CHE by determining an optimal hydraulic diameter of the micro–channels in a CHE, for minimal hydraulic losses. Two Computational Fluid Dynamics (CFD) models were developed for a single micro–channel that is present in a CHE. The first model had a semi–circular cross–section, the second a triangular cross–section. The results were verified by comparing it with existing experimental data. Following the verification of the results, the micro–channel was optimized by implementing an optimum diameter for the lowest pressure drop over the micro–channel. This was done for both the semi–circular and triangular micro–channel cross–sections. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
2

The optimal hydraulic diameter of semicircular and triangular shaped channels for compact heat exchangers / J.C. Venter

Venter, Johann Christiaan January 2010 (has links)
All heat pump cycles have one common feature that connects them to one another; this feature is the presence of a heat exchanger. There are even some heat–driven cycles that are completely composed of heat exchangers, every heat exchanger fulfilling a different, though critical role. The need therefore exists to optimize heat exchangers, more specifically Compact Heat Exchangers (CHE). This study deals with the optimization of such a CHE by determining an optimal hydraulic diameter of the micro–channels in a CHE, for minimal hydraulic losses. Two Computational Fluid Dynamics (CFD) models were developed for a single micro–channel that is present in a CHE. The first model had a semi–circular cross–section, the second a triangular cross–section. The results were verified by comparing it with existing experimental data. Following the verification of the results, the micro–channel was optimized by implementing an optimum diameter for the lowest pressure drop over the micro–channel. This was done for both the semi–circular and triangular micro–channel cross–sections. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0706 seconds