1 |
Carrier Lifetime Measurement for Characterization of Ultraclean Thin p/p+ Silicon Epitaxial LayersJanuary 2013 (has links)
abstract: Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases. / Dissertation/Thesis / M.S. Materials Science and Engineering 2013
|
2 |
High-Precision, Mixed-Signal Mismatch Measurement of Metal-Oxide-Metal Capacitors and a 13-GHz 5-bit 360-Degree Phase ShifterBustamante, Danilo 05 August 2020 (has links)
A high-precision mixed-signal mismatch measurement technique for metal-oxide metal (MoM) capacitors as well as the design of a 13-GHz 5-bit 360-degree phase shifter are presented. This thesis presents a high-precision, mixed-signal mismatch measurement technique for metal-oxide–metal capacitors. The proposed technique incorporates a switched-capacitor op amp within the measurement circuit to significantly improve the measurement precision while relaxing the resolution requirement on the backend analog-to-digital converter (ADC). The proposed technique is also robust against multiple types of errors. A detailed analysis is presented to quantify the sensitivity improvement of the proposed technique over the conventional one. In addition, this thesis proposes a multiplexing technique to measure a large number of capacitors in a single chip and a new layout to improve matching. A prototype fabricated in 180 nm CMOS technology demonstrates the ability to sense capacitor mismatch standard deviation as low as 0.045% with excellent repeatability, all without the need of a high-resolution ADC. The 13-GHz 5-bit 360-degree phase shifter consists of 2 stages. The first stage utilizes a delay line for 4-bit 180-degree phase shift. A second stage provides 1-bit 180-degree phase shift. The phase shifter includes gain tuning so as to allow a gain variation of less than 1 dB. The design has been fabricated in 180 nm CMOS technology and measurement results show a complete 360◦ phase shift with an average step size of 10.7◦ at 13-GHz. After calibration the phase shifter presented an output gain S21 of 0.5 dB with a gain variation of less than 1 dB across all codes at 13-GHz. The remaining s-parameter testing showed a S22 and S11 below -11 dB and a S12 below -49 dB at 13 GHz.
|
3 |
Error-Aware Density-Based Clustering of Imprecise Measurement ValuesLehner, Wolfgang, Habich, Dirk, Volk, Peter B., Dittmann, Ralf, Utzny, Clemens 15 June 2022 (has links)
Manufacturing process development is under constant pressure to achieve a good yield for stable processes. The development of new technologies, especially in the field of photomask and semiconductor development, is at its phys- ical limits. In this area, data, e.g. sensor data, has to be collected and analyzed for each process in order to ensure process quality. With increasing complexity of manufactur- ing processes, the volume of data that has to be evaluated rises accordingly. The complexity and data volume exceeds the possibility of a manual data analysis. At this point, data mining techniques become interesting. The application of current techniques is complex because most of the data is captured with sensor measurement tools. Therefore, every measured value contains a specific error. In this paper we propose an error-aware extension of the density-based al- gorithm DBSCAN. Furthermore, we present some quality measures which could be utilized for further interpretation of the determined clustering results. With this new cluster algorithm, we can ensure that masks are classified into the correct cluster with respect to the measurement errors, thus ensuring a more likely correlation between the masks.
|
Page generated in 0.1146 seconds