Spelling suggestions: "subject:"crystalline polymers"" "subject:"microcrystalline polymers""
11 |
Tailoring the mesoscopic structure and orientation of semicrystalline and liquid-crystalline polymers : from 1D- to 2D-confinement / Adapter la structure mésoscopique et l'orientation des polymères semi-cristallins et des polymères de cristaux liquides : confinement à 1D et 2DOdarchenko, Yaroslav 15 November 2012 (has links)
Le contrôle de la microstructure des matériaux organiques est crucial pour des applications pratiques telles que la photonique, la biomédecine ou encore le domaine très dynamique de l'électronique organique. Les études récentes ont montré une possibilité de contrôler la structure des polymères à l'échelle nanométrique en utilisant l'auto-assemblage supramoléculaire sous confinement spatial. Bien que de nombreuses études ont déjà été effectuées dans ce domaine, plusieurs questions essentielles restent ouvertes. En particulier, il est important de comprendre comment les différents processus de formation structurale tels que la cristallisation, la formation d`une phase cristal liquide et la séparation de phases se déroulent sous confinement. Dans le présent travail, nous abordons l'effet du confinement à 1D et à 2D sur la formation de la structure pour une variété de systèmes, y compris les copolymères segmentés de poly(éther-ester-amide) (PEEA), les polymères cristaux liquides (CL) dont la chaîne principale appartient à la famille des poly(di-n-alkylsiloxane)s et des copolymères à bloc cristaux-liquides /semicristallins formés par complexation de poly(2-vinylpyridine-b-oxyde d'éthylène) (P2VP-PEO) avec un ligand cunéiforme, l'acide 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoïque. Pour être capable de traiter de façon adéquate la morphologie complexe de ces systèmes sous confinement, le travail a été effectué en utilisant une batterie de méthodes expérimentales. Les techniques principales opérationnelles dans l'espace direct et réciproque que nous avons employées sont décrites dans le chapitre 2. [...] / Controlling the micro-structure of organic materials is crucial for a variety of practical applications such as photonics, biomedicine or the rapidly growing field of organic electronics. Recent studies have shown a possibility of tailoring the polymer structure on the nanoscale using supramolecular self-assembly under spatial confinement. Despite extensive studies already performed in this field, many questions remain open. In particular, it will be important to understand how different structure formation processes such as crystallization, LC-phase formation, microphase separation, and others occur under confinement. In the present work, we address the effect of 1D- and 2D-confinement on the structure formation for a variety of systems including segmented poly(ether-ester-amide) (PEEA) copolymers, main-chain liquid-crystalline (LC) polymers belonging to the family of poly(di-n-alkylsiloxane)s and liquid-crystalline/semicrystalline block copolymers formed through complexation of poly (2-vinylpyridine-b-ethylene oxide) (P2VP-PEO) with a wedge-shaped ligand, 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoic acid. In order to reveal the morphological diversity of the studied systems under confinement, the work was carried out on bulk materials and on thin films employing a battery of experimental methods. The main experimental techniques operational in direct and reciprocal space applied in my work are described in chapter 2. [...]
|
12 |
Curvy polymer crystals : Why crystalline lamellae twist during growth / Cristaux de polymères courbe : Pourquoi Twist lamelles cristallines pendant la croissanceRosenthal, Martin 01 July 2010 (has links)
Pour comprendre l'origine de la torsion lamellaire dans le poly(triméthylène téréphtalate), PTT, une étude a été entrepris sur la structure des sphérolites à bandes de PTT en utilisant la micro-diffraction des rayons-X sur une source synchrotrone. Nous avons démontré que les pics de diffraction de la maille triclinique de PTT révèlent une variation périodique de l'intensité en fonction de la distance jusqu'au centre sphérolitique lorsque nous effectuons un balayage avec un micro-faisceau de rayons X. Cela indique que la torsion lamellaire est strictement uniforme et régulière. Celte derrière observation est plus compatible avec le modèle expliquant la torsion comme résultat de contraintes surfaciques que des dislocations-vis géantes. En outre, les données expérimentales montrent que les polymères achiraux ne sont pas indifférents par rapport à l'inversion de la chiralité lamellaire, et que le changement de la chiralité est nécessairement accompagné d'un changement de signe du vecteur de croissance. En plus, nous avons observé que l'inclinaison globale de la chaîne (c'est à dire, l'inclinaison du paramètre c de la maille dans le plan perpendiculaire à la direction de la croissance rapide) n'affecte pas la vitesse et le sens de la torsion. Cela remet en question la seconde hypothèse du modèle de Keith et Padden. Par contre, l'inclinaison des segments de la chaine à l'interface du cristal lamellaire peut être identifiée comme le facteur clé déterminant les contraintes superficielles qui provoquent la torsion lamellaire. Avec la variation de l'épaisseur du cristal la chiralité lamellaire change, ce qui dû au changement de l'angle des segments polymères à l'interface. / To address the origin of the lamellar twisting in polytrimethylene terephthalate (PTT) an in-depth micro-focus X-ray scattering study was correlated to the data derived using conventional polarized optical microscopy to study the banded spherulite texture for PTT. It is shown that the diffraction peaks of the triclinic lattice of PTT show a periodical pattern as a function of the distance from the spherulite center when scanned with the micro focus X-ray beam. This indicates that the lamellar twist has a strictly uniform and regular nature. The latter observation is more compatible with the model explaining the twist as a result of unbalanced surface stresses than the giant screw dislocations. Moreover, the data shows that achiral polymers are in fact not indifferent to the inversion of the lamellar handedness, and that a change in handedness is necessarily accompanied by a change in the sign of the growth vector. At the same time, we show that the overall chain tilt (i.e., the inclination of the c-parameter of the unit cell in the plane perpendicular to the fast growth direction) does not affect the rate and sense of twisting. This calls into question the second premise of the KP-mod el. Instead, the local inclination of the terminal segment of the crystalline stem protruding the lamellar surface can be identified as the origin of the surface stresses and forcing the lamellar ribbon to twist. With the variation of the crystal thickness as a function of crystallization temperature the angle and direction of this segment is changed, resulting in a change of the lamellar ribbon chirality.
|
13 |
Time-resolved imaging of the micro-mechanical behavior of elastomeric polypropyleneNeumann, Martin 28 September 2015 (has links)
Ziel dieser Arbeit ist es, eine Verbindung zwischen der Mikrostruktur teilkristalliner Polymere und derer mechanischen Eigenschaften auf der Mikro- und Nanometerskala aufzubauen. Dazu wurden Methoden der Rasterkraftmikroskopie verwendet um sowohl orts- als auch zeitaufgelöst Kristallisations-, Deformations- und Diffusionsprozesse in der Mikrostruktur von elastomerem Polypropylen (ePP) abzubilden. Die mechanischen Eigenschaften wurden simultan mit Mikrozugversuchen bestimmt. So konnte beispielsweise ein Zusammenhang zwischen abnehmender Kristall-Kristall-Distanz und einem Ansteigen des Elastizitätsmoduls während der Kristallisation nachgewiesen werden. Weiterhin war es möglich die Veränderung der nano-mechanischen Eigenschaften während der Kristallisation einzelner kristalliner Lamellen in deren direkter Umgebung mit MUSIC-mode Rasterkraftmikroskopie zu untersuchen. Laterale Querexpansion (auxetisches Verhalten) konnte bei uniaxialen Zugversuchen für die Kreuzschraffur-Struktur elastomeren Polypropylens auf der Größenskala einiger Mikrometer nachgewiesen werden. Zusätzlich wurde eine Orientierungsabhängigkeit dieses Effekts beobachtet. Außerdem wurde die Diffusion einzelner Kristalle in der Mikrostruktur von ePP beobachtet. Die Heterogenität dieser Diffusion lässt auf eine kristallin-amorph Grenzschicht um alle Kristalle schließen.
|
14 |
Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection moldingLin, X., Caton-Rose, Philip D., Ren, D.Y., Wang, K.S., Coates, Philip D. January 2013 (has links)
No / The advances of the polymer melt flow-induced crystallization behaviour and its influence on mechanical properties of high density polyethylene (HDPE) in micron injection (MI) were studied in the present paper. Analysis of mechanical performance, including yield stress and elongation at break, for samples adopted from different regions in a molded plaque showed that a higher injection speed, a higher mold temperature and a longer cooling time could effectively enhance the yield stress but negatively promoted the ductility. Then, the mechanisms of such variation of mechanical performance and the factors affecting it were investigated by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized light microscopy (PLM). The super high shear rate during cavity feeding in MI molding not only induced a typical three-layered structure but also developed a highly oriented fibrously morphological structure in the skin layer. However, such fully oriented morphology was much negative in the interlayer and even could not be observed in the core layer. The results from SEM and PLM observations indicated that the orientation morphology varied significantly through the plaque's cross-section and thickness of the each layer changed with the process parameters and geometric position, and finally led to variation of the mechanical performance.
|
15 |
Subsurface and MUSIC-Mode Atomic Force MicroscopySpitzner, Eike-Christian 29 August 2012 (has links) (PDF)
Ziel dieser Arbeit war die Entwicklung neuer Methoden in der Rasterkraftmikroskopie, um die Qualität und Interpretierbarkeit von Oberflächenabbildungen auf der Nanometerskala, vor allem jener sehr weicher Proben, entscheidend zu verbessern. Der für polymere und biologische Materialien standardmäßig verwendete intermittierende Kontaktmodus führt auf weichen Oberflächen zu verfälschten Abbildungen der Topographie und der mechanischen Eigenschaften. In dieser Arbeit wurden Techniken entwickelt, die einerseits zerstörungsfreie, tiefenaufgelöste Rasterkraftmikroskopie und andererseits Einzelmessungen mit variabler Dämpfung im intermittierenden Kontaktmodus ermöglichen. Die laterale Auflösung beider Methoden liegt dabei im Rahmen herkömmlicher Techniken (< 10 nm). Die Tiefenauflösung konnte im Vergleich zu anderen Methoden um eine Größenordnung auf unter 1 nm verbessert werden. Die neuen Methoden wurden auf einer breiten Palette polymerer Materialien angewandt. Die räumliche Struktur oberflächennaher Bereiche eines Blockcopolymerfilms konnte im Vergleich zu herkömmlichen Methoden deutlich genauer abgebildet werden. Gleiches wurde auf elastomerem Polypropylen erreicht. Es konnten weiche, amorphe Deckschichten auf teilkristallinen Polymeren nachgewiesen und vermessen werden, was in der organischen Elektronik eine wichtige Rolle spielen kann. Die innere Struktur selbstangeordneter Nanodrähte aus Oligothiophen-Aggregaten konnte aufgelöst werden und es wurde die Selbstanordnung von Kollagenfibrillen im gequollenen Zustand beobachtet.
|
16 |
Subsurface and MUSIC-Mode Atomic Force MicroscopySpitzner, Eike-Christian 02 August 2012 (has links)
Ziel dieser Arbeit war die Entwicklung neuer Methoden in der Rasterkraftmikroskopie, um die Qualität und Interpretierbarkeit von Oberflächenabbildungen auf der Nanometerskala, vor allem jener sehr weicher Proben, entscheidend zu verbessern. Der für polymere und biologische Materialien standardmäßig verwendete intermittierende Kontaktmodus führt auf weichen Oberflächen zu verfälschten Abbildungen der Topographie und der mechanischen Eigenschaften. In dieser Arbeit wurden Techniken entwickelt, die einerseits zerstörungsfreie, tiefenaufgelöste Rasterkraftmikroskopie und andererseits Einzelmessungen mit variabler Dämpfung im intermittierenden Kontaktmodus ermöglichen. Die laterale Auflösung beider Methoden liegt dabei im Rahmen herkömmlicher Techniken (< 10 nm). Die Tiefenauflösung konnte im Vergleich zu anderen Methoden um eine Größenordnung auf unter 1 nm verbessert werden. Die neuen Methoden wurden auf einer breiten Palette polymerer Materialien angewandt. Die räumliche Struktur oberflächennaher Bereiche eines Blockcopolymerfilms konnte im Vergleich zu herkömmlichen Methoden deutlich genauer abgebildet werden. Gleiches wurde auf elastomerem Polypropylen erreicht. Es konnten weiche, amorphe Deckschichten auf teilkristallinen Polymeren nachgewiesen und vermessen werden, was in der organischen Elektronik eine wichtige Rolle spielen kann. Die innere Struktur selbstangeordneter Nanodrähte aus Oligothiophen-Aggregaten konnte aufgelöst werden und es wurde die Selbstanordnung von Kollagenfibrillen im gequollenen Zustand beobachtet.
|
Page generated in 0.1015 seconds