• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Restorative Effects of Pulsed Infrared Light Therapy on Significant Loss of Peripheral Protective Sensation in Patients With Long-Term Type 1 and Type 2 Diabetes Mellitus

Arnall, D., Nelson, A. G., López, L., Sanz, N., Iversen, L., Sanz, I., Stambaugh, L., Arnall, S. B. 01 May 2006 (has links)
Pulsed infrared light therapy (PILT) has been shown to increase peripheral sensation in diabetic patients with diabetic peripheral neuropathy (DPN). However, most studies last for very short periods, with the subjects receiving only 6-20 treatments. The purpose of this study was to evaluate the effectiveness of an eight-week course of PILT in reversing long-standing, profound DPN in patients with type 1 and type 2 diabetes. Twenty-two subjects with a diagnosis of type 1 (n=2) or type 2 (n=20) diabetes participated in the study. PILT was administered to one foot chosen at random with the other foot serving as a within-subject control (no treatment). Patients underwent 24 treatments (3 times/week, for eight weeks) for 30 min per treatment. Changes in peripheral protective sensation (PPS) were measured using Semmes-Weinstein monofilaments (SWM) ranging from 3.7 to 6.48. PILT improved PPS even in patients with long-standing chronic neuropathies whose initial pre-study sensation was not measurable with a 200-g SWM. PILT significantly improves PPS. While the exact mechanism of action is not understood, infrared light may improve peripheral neuropathies by improving foot perfusion by stimulating nitric oxide production.
2

Enhancing Sensory Discrimination Training using Brain Modulation / Förstärkning av sensorisk diskrimineringsträning genom användning av hjärnmodulering

Westerlund, Agnes January 2022 (has links)
Damage to the nervous system may cause sensorimotor impairment, often resulting in chronic neuropathic pain. Phantom limb pain affects multiple amputees and the treatment options are limited. A promising treatment option to reduce chronic pain is by training sensory discrimination. At the Center for Bionics and Pain Research, a sensory training device has been developed. Transcranial direct current stimulation (tDCS) is a technique to stimulate different regions of the cerebral cortex. In studies, anodal tDCS of the sensorimotor cortex has shown to improve tactile acuity. Until now, the effect of the sensory discrimination training, performed with the sensory training device, in combination with tDCS has not been tested. The purpose of this master’s thesis was to determine the effect of tDCS applied on the sensorimotor cortex on the outcomes of sensory discrimination training. The purpose was also to compare the effect of two different methods of stimulation, namely conventional and High Definition tDCS. 16 able-bodied participants underwent three single sessions with 40 minutes of sensory discrimination training: one session combined with conventional tDCS, one session combined with High Definition tDCS and one session without tDCS. The tactile acuity was determined by the two-point discrimination test and the Semmes-Weinstein monofilament test, prior to and one hour after each session. This study showed that 40 minutes of sensory discrimination training was sufficient to improve the two-point discrimination in the sensory trained areas, compared to the sensory untrained areas (p=0.02). However, the improvement in two-point discrimination was not statistically significant between the interventions, i.e. the improvement in two-point discrimination for the sessions with brain modulation was not statistically significant compared to the session without brain modulation. The monofilament assessments showed an improvement in monofilament score for the sensory untrained skin patches (p=0.053). This study concluded that single sessions of training was enough to improve two-point discrimination but not monofilament score at the site of stimulation. This study lays a foundation for what parameters to include in future studies.

Page generated in 0.0397 seconds