Spelling suggestions: "subject:"sequential month carlo"" "subject:"sequential fonte carlo""
1 |
Adaptive stopping for fast particle smoothingTaghavi, Ehsan, Lindsten, Fredrik, Svensson, Lennart, Schön, Thomas B. January 2013 (has links)
Particle smoothing is useful for offline state inference and parameter learning in nonlinear/non-Gaussian state-space models. However, many particle smoothers, such as the popular forward filter/backward simulator (FFBS), are plagued by a quadratic computational complexity in the number of particles. One approach to tackle this issue is to use rejection-sampling-based FFBS (RS-FFBS), which asymptotically reaches linear complexity. In practice, however, the constants can be quite large and the actual gain in computational time limited. In this contribution, we develop a hybrid method, governed by an adaptive stopping rule, in order to exploit the benefits, but avoid the drawbacks, of RS-FFBS. The resulting particle smoother is shown in a simulation study to be considerably more computationally efficient than both FFBS and RS-FFBS. / CNDM / CADICS
|
2 |
Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space modelsLindsten, Fredrik, Bunch, Pete, Godsill, Simon J., Schön, Thomas B. January 2013 (has links)
We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. / CNDM / CADICS
|
3 |
GPU Implementation of the Particle Filter / GPU implementation av partikelfiltretGebart, Joakim January 2013 (has links)
This thesis work analyses the obstacles faced when adapting the particle filtering algorithm to run on massively parallel compute architectures. Graphics processing units are one example of massively parallel compute architectures which allow for the developer to distribute computational load over hundreds or thousands of processor cores. This thesis studies an implementation written for NVIDIA GeForce GPUs, yielding varying speed ups, up to 3000% in some cases, when compared to the equivalent algorithm performed on CPU. The particle filter, also known in the literature as sequential Monte-Carlo methods, is an algorithm used for signal processing when the system generating the signals has a highly nonlinear behaviour or non-Gaussian noise distributions where a Kalman filter and its extended variants are not effective. The particle filter was chosen as a good candidate for parallelisation because of its inherently parallel nature. There are, however, several steps of the classic formulation where computations are dependent on other computations in the same step which requires them to be run in sequence instead of in parallel. To avoid these difficulties alternative ways of computing the results must be used, such as parallel scan operations and scatter/gather methods. Another area where parallel programming still is not widespread is the area of pseudo-random number generation. Pseudo-random numbers are required by the algorithm to simulate the process noise as well as for avoiding the particle depletion problem using a resampling step. In this thesis a recently published counter-based pseudo-random number generator is used.
|
4 |
Towards smooth particle filters for likelihood estimation with multivariate latent variablesLee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change.
When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers.
Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous.
In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion.
|
5 |
Towards smooth particle filters for likelihood estimation with multivariate latent variablesLee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change.
When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers.
Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous.
In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion.
|
6 |
Bayesian Estimation of a Single Mass Concentration Within an AsteroidWoodard, Aaron Jacob, Woodard, Aaron Jacob January 2017 (has links)
Orbit determination has long relied on the use of the Kalman filter, or specifically the extended Kalman filter, as a means of accurately navigating spacecraft. With the advent of cheaper, more powerful computers more accurate techniques such as the particle filter have been utilized. These Bayesian types of filters have in more recent years found their way to other applications. Dr. Furfaro and B. Gaudet have demonstrated the ability of the particle filter to accurately estimate the angular velocity, homogenous density, and rotation angle of a non-uniformly rotating ellipsoid shaped asteroid. This paper extends that work by utilizing a particle filter to accurately estimate the angular velocity and homogenous density of an ellipsoidal asteroid while simultaneously determining the location and mass of a mass concentration modeled as a point mass embedded within the asteroid. This work shows that by taking measurements in several locations around the asteroid, the asteroid's rotation state and mass distribution can be discerned.
|
7 |
Towards smooth particle filters for likelihood estimation with multivariate latent variablesLee, Anthony 11 1900 (has links)
In parametrized continuous state-space models, one can obtain estimates of the likelihood of the data for fixed parameters via the Sequential Monte Carlo methodology. Unfortunately, even if the likelihood is continuous in the parameters, the estimates produced by practical particle filters are not, even when common random numbers are used for each filter. This is because the same resampling step which drastically reduces the variance of the estimates also introduces discontinuities in the particles that are selected across filters when the parameters change.
When the state variables are univariate, a method exists that gives an estimator of the log-likelihood that is continuous in the parameters. We present a non-trivial generalization of this method using tree-based o(N²) (and as low as O(N log N)) resampling schemes that induce significant correlation amongst the selected particles across filters. In turn, this reduces the variance of the difference between the likelihood evaluated for different values of the parameters and the resulting estimator is considerably smoother than naively running the filters with common random numbers.
Importantly, in practice our methods require only a change to the resample operation in the SMC framework without the addition of any extra parameters and can therefore be used for any application in which particle filters are already used. In addition, excepting the optional use of interpolation in the schemes, there are no regularity conditions for their use although certain conditions make them more advantageous.
In this thesis, we first introduce the relevant aspects of the SMC methodology to the task of likelihood estimation in continuous state-space models and present an overview of work related to the task of smooth likelihood estimation. Following this, we introduce theoretically correct resampling schemes that cannot be implemented and the practical tree-based resampling schemes that were developed instead. After presenting the performance of our schemes in various applications, we show that two of the schemes are asymptotically consistent with the theoretically correct but unimplementable methods introduced earlier. Finally, we conclude the thesis with a discussion. / Science, Faculty of / Computer Science, Department of / Graduate
|
8 |
Maximum likelihood parameter estimation in time series models using sequential Monte CarloYildirim, Sinan January 2013 (has links)
Time series models are used to characterise uncertainty in many real-world dynamical phenomena. A time series model typically contains a static variable, called parameter, which parametrizes the joint law of the random variables involved in the definition of the model. When a time series model is to be fitted to some sequentially observed data, it is essential to decide on the value of the parameter that describes the data best, a procedure generally called parameter estimation. This thesis comprises novel contributions to the methodology on parameter estimation in time series models. Our primary interest is online estimation, although batch estimation is also considered. The developed methods are based on batch and online versions of expectation-maximisation (EM) and gradient ascent, two widely popular algorithms for maximum likelihood estimation (MLE). In the last two decades, the range of statistical models where parameter estimation can be performed has been significantly extended with the development of Monte Carlo methods. We provide contribution to the field in a similar manner, namely by combining EM and gradient ascent algorithms with sequential Monte Carlo (SMC) techniques. The time series models we investigate are widely used in statistical and engineering applications. The original work of this thesis is organised in Chapters 4 to 7. Chapter 4 contains an online EM algorithm using SMC for MLE in changepoint models, which are widely used to model heterogeneity in sequential data. In Chapter 5, we present batch and online EM algorithms using SMC for MLE in linear Gaussian multiple target tracking models. Chapter 6 contains a novel methodology for implementing MLE in a hidden Markov model having intractable probability densities for its observations. Finally, in Chapter 7 we formulate the nonnegative matrix factorisation problem as MLE in a specific hidden Markov model and propose online EM algorithms using SMC to perform MLE.
|
9 |
Nonlinear State Estimation in Polymer Electrolyte Membrane Fuel CellsTumuluri, Uma January 2008 (has links)
No description available.
|
10 |
Predictive Model Fusion: A Modular Approach to Big, Unstructured DataHoegh, Andrew B. 05 May 2016 (has links)
Data sets of increasing size and complexity require new approaches for prediction as the sheer volume of data from disparate sources inhibits joint processing and modeling. Rather modular segmentation is required, in which a set of models process (potentially overlapping) partitions of the data to independently construct predictions. This framework enables individuals models to be tailored for specific selective superiorities without concern for existing models, which provides utility in cases of segmented expertise. However, a method for fusing predictions from the collection of models is required as models may be correlated. This work details optimal principles for fusing binary predictions from a collection of models to issue a joint prediction. An efficient algorithm is introduced and compared with off the shelf methods for binary prediction. This framework is then implemented in an applied setting to predict instances of civil unrest in Central and South America. Finally, model fusion principles of a spatiotemporal nature are developed to predict civil unrest. A novel multiscale modeling is used for efficient, scalable computation for combining a set of spatiotemporal predictions. / Ph. D.
|
Page generated in 0.0952 seconds