• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Density stratification and associated front in Liverpool bay

Czitrom Baus, S. P. R. January 1982 (has links)
No description available.
2

Observations and modelling of the western Irish Sea gyre

Horsburgh, Kevin J. January 1999 (has links)
Observations from 1995 and 1996 described the seasonal evolution of the threedimensional density field in the western Irish Sea. A cold, dense pool flanked by strong nearbed density gradients was present from May until October. Temperature had the dominant effect on density from June onwards. The trajectories of 55 satellite-tracked drifters defmed the full spatial extent of the cyclonic circulation that is the western Irish Sea gyre. Several distinct recirculation paths were observed and drifter speeds were in good agreement with geostrophic calculations based on the observed density field. The existence of such organised, baroclinic flows in shelf seas demands that coastal ocean models should reproduce their dynamics correctly, if the models are to be useful as environmental management tools. One such model, ECOMsi, was applied to the study area and results from seasonal simulations were compared with the observations. A new technique was developed to perform quantitative comparisons between modelled and observed flow fields. The model successfully reproduced the three-dimensional temperature structure throughout the seasonal simulations, and also predicted the cyclonic, near-surface residual circulation of the gyre. The model demonstrated conclusively that the gyre is density-driven and revealed the same recirculation paths that were visible in the drifter tracks. The vertical structure of the modelled density-driven flow confirmed the geostrophic nature of the currents and emphasised the important dynamical role of sharp density gradients near the bed (bottom fronts). A quantitative comparison of different model runs identified the critical parameterisations and forcing quantities for this application. An accurate specification of air temperature over the sea region was required for the model to achieve the correct timing of the stratification breakdown. During this phase, convective cooling at the surface was seen to be as important as the mixing by autumnal winds in eroding the density structure. The possibility of a seasonal reversal in density-driven flow along the east coast of Ireland was also identified. A new interaction between the wind and the density field, which could defme where the strongest currents in the gyre are to be found, is described. The model is now considered to be sufficiently well tested to use in a predictive capacity and for biological transport studies. This work highlights the benefits that can be obtained using high quality spatial and temporal field observations in the critical testing of numerical models, and furthermore suggests that shelf seas are the perfect location for such tests to be performed.
3

Processes and architectures of deltas in shelf-break and ramp platforms examples from the Eocene of West Spitsbergen (Norway), the Pliocene paleo-Orinoco Delta (SE Trinidad), and the Cretaceous Western Interior Seaway (S. Wyoming & NE Utah) /

Uroza, Carlos Alberto, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
4

The dynamics of suspended particles in a seasonally stratified coastal sea

Cross, Jaimie January 2013 (has links)
A comprehensive investigation into the relationship between physical forcing and sus- pended particles in the shallow shelf region of the Western English Channel has been conducted, in order to evaluate the temporal dynamics of suspended particle populations. Measurements were taken across tidal cycles and seasons at station L4, part of the Western Channel Observatory (WCO), using the combination of a free-fall microstructure profiler and holographic imaging. Confirmation that L4 is weakly stratified is given, and that the formation of the seasonal thermocline is substantially altered by the spring-neap cy- cle. Stratification is variable and prone to periodic and partial erosion from atmospheric forcing during any point in any season. L4 undergoes moderate turbulent dissipation, principally as a result of tidal forcing. Typically, values of ε do not exceed 10−4 W kg−1 . L4 also exhibits tidal asymmetry, chiefly in response to stratification which, albeit weak, is frequently able to suppress turbulence when generated from the sea bed. The potential energy anomaly is small at L4, as expected for a weakly-stratified environment. Maxi- mum values in summer were shown to not exceed 50 J m−3 . Values of bed stress, τ0 , are rarely greater than around 0.18 N m−2 . Nonetheless, the critical erosion threshold falls below this, and is therefore smaller than that observed in similar locations around the UK. Seasonality in the amount of material resuspended from the seabed is important at L4. The presence of certain biological particles strongly influence particle size and may also determine if a given particle is lifted from the bed. Particles ≥ 200 μm are relatively rare, the site is dominated by particles smaller than this value in line with many other UK sites. Under certain conditions the theoretical maximum limit of particle size, the Kolmogorov length scale, does not hold and many examples of occasions when this threshold is exceeded are shown. This may generate important consequences in subsequent work undertaken at this site and other temperate shelf locations globally, particularly as these results indicate that maximum particle size appears to be governed less by the size of the local turbulent eddies and more by the presence of biological particles. This is another key seasonal component to particle dynamics in the Western English Channel. Phytoplankton populations are readily advected into and out of the L4 site, calling into question the current sampling strategy of the WCO to rely exclusively upon point measurements. Small increases in atmospheric forcing have the ability to rapidly disperse patches of phytoplankton, possibly to the point of cell mortality. Traditional sampling techniques for assessing zooplankton density have been shown to radically underestimate the number of animals present at L4, which will increase error estimates on current ecosystem models.

Page generated in 0.0603 seconds