11 |
Silver nanowire networks : effects of percolation and thermal annealing on physical properties / Réseaux de nanofils de argent : effets de percolation et recuit thermique sur les propriétés physiquesLangley, Daniel 28 October 2014 (has links)
L'utilisation de matériaux conducteurs transparents (TCM) a rapidement augmenté au cours des deux dernières décennies en raison de la demande croissante liée à l'usage d'appareils électroniques personnels ainsi qu'au développement de cellules solaires à base de couches minces. Jusqu'à présent, le TCM le plus couramment utilisé a été l'oxyde d'indium et d'étain (ITO), mais l'indium est une terre rare dont l'environnement géopolitique lié à son approvisionnement et à sa production est complexe. En outre, la famille des oxydes transparents conducteurs possèdent de médiocres propriétés mécaniques (associée à une fragilité mécanique) et exige souvent pour leur dépôt soit une synthèse à haute température (> 400 ° C) soit des procédés sous vide. Pour ces raisons, la recherche au cours des dernières années a mis l'accent sur la recherche de TCM alternatifs afin de remplacer l'ITO. Cette thèse s'ancre sur une double approche combinant simulations numériques et des expériences pour explorer le dépôt et l'optimisation des réseaux de nanofils d'argent pour une utilisation comme électrode transparente d'une part et d'améliorer la compréhension de leurs propriétés physiques d'autre part. L'approche par simulation concerne la modélisation de la percolation de réseaux de nanofils 2D tandis que la composante expérimentale explore les propriétés électriques et optiques des réseaux de nanofils d'argent et notamment le comportement de la résistance électrique lors de recuits thermiques. Nous présentons dans ce travail la modélisation 2D de la percolation de systèmes initialement composés de bâtonnets parfaits au sein d'un réseau idéal, puis l'étude de l'influence de paramètres tels que: la distribution des longueurs de bâtonnets, des distributions angulaires ou de la courbure de ces bâtonnets. Nous nous sommes aussi intéressés à la divergence de la densité critique nécessaire pour observer la percolation au sein de systèmes de petite taille (vis-à-vis de la longueur des bâtonnets). Par ailleurs un travail préliminaire sur la simulation de l'efficacité de collecte (ou d'injection) de charges par un réseau de nanofils est présenté. Le volet expérimental fournit une analyse de l'influence de la longueur des fils, de leur diamètre, de la densité du réseau et enfin de la méthode de dépôt sur les propriétés optiques et électriques des réseaux de nanofils d'argent. Une étude approfondie de l'effet de recuit thermique sur les propriétés des réseaux a été réalisée qui a révélé plusieurs mécanismes qui sont à l'origine de la diminution initiale de la résistance électrique à relativement basse température puis la divergence de la résistance électrique observée à haute température. Une observation originale a permis de révéler un phénomène de percolation géométrique quantifiée pour les réseaux peu denses qui a été associé à la présence de chemins efficaces de percolation indépendants. Ce travail permet de conclure que les réseaux de nanofils d'argent constituent une solution intéressante pour une utilisation comme électrode transparente en remplacement de l'ITO ; notamment car ils ont des propriétés mécaniques supérieures et peuvent atteindre des propriétés électro-optiques comparables voire même supérieures. / The use of transparent conductive materials (TCMs) has rapidly increased in the last two decades as a result of increasing demand for personal electronic devices and the development of thin film based solar cells. To date the most commonly used TCM is indium tin oxide (ITO), however indium is a rare earth metal with a complex geopolitical environment surrounding its supply and production. Furthermore the oxide family suffers from poor mechanical properties such as brittleness and generally requires either high temperature synthesis (>400°C) or vacuum processes for their deposition. For these reasons, research in recent years has focused on searching for a TCM to replace ITO. This thesis uses a dual approach combining simulations and experiments to explore the fabrication and optimisation of silver nanowire networks for use as a TCM and to improve the understanding of their physical properties. The simulation component focuses on the application of percolation modelling to 2D nanowire networks while the experimental component explores the electrical and optical properties of silver nanowire networks and their electrical behaviour under thermal annealing. We present in this work the modelling of 2D stick percolation systems initially composed of perfect idealised sticks, and then investigate the influence of parameters such as: length distributions, angular distributions or curved nanowires. We address the divergence of the critical density for the onset of percolation observed for small system sizes and introduce some preliminary work on simulating the collection (or injection) efficiency of charges by a nanowire network. The experimental component provides a discussion of the impact of wire length, wire diameter, network density and fabrication technique on the optical and electrical properties of silver nanowire networks. An in-depth study of the effect of thermal annealing on the networks properties was undertaken which revealed several mechanisms that were responsible for the initial reduction of resistance and final loss of conductivity observed. An original observation enables the revelation of geometrical quantized percolation for rather sparse networks. Finally we conclude that silver nanowire networks are an excellent prospect for a TCM to replace ITO, they have superior mechanical properties and can achieve comparable and even superior electro optical properties.
|
12 |
Charakterizace 1-D nanostruktur metodami SPM / Characterization of 1-D Nanostructures by SPM MethodsŠkoda, David January 2010 (has links)
The thesis is aimed at the characterization of carbon nanotubes and silver nanowires by Scanning Probe Microscopy, namely Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Conductive AFM (CAFM) and Scanning Near-Field Optical Microscopy (SNOM). Carbon nanotubes were analyzed by STM, AFM and CAFM microscopy. In a designed apparatus the silver nanowires were fabricated by template assisted deposition and were analyzed with respect to their geometry (AFM), local conductivity (CAFM) and optical properties (SNOM, microreflex spectroscopy). It was found that preferential type of carbon nanowires depends on the fabrication process. The measurements of local conductivity of the nanotubes revealed the similarity with the STM measurements. The AFM measurements of silver nanowires confirmed their growth inside the pores of polycarbonate template. Single nanowires exhibits the semiconducting behavior according to I--V measurement and localized plasmon resonances.
|
13 |
Transparent Silver Nanowire Bottom Electrodes in Organic Solar Cells / Transparente Grundelektroden aus Silbernanodrähten in organischen SolarzellenBormann, Jan Ludwig 25 January 2017 (has links) (PDF)
Organic solar cells (OSCs) is an emerging photovoltaic technology that opens up new application areas where common inorganic techniques are not able to score. Some of those key features are flexibility, light weight, semitransparency, and low cost processing. The current industry-standard for the transparent electrode, indium tin oxide (ITO), cannot provide these properties because it is brittle and expensive. This thesis aims to investigate an alternative type of promising transparent electrode: silver nanowire (AgNW) networks. They exhibit similar or even better optical and electrical performance than ITO down to a sheet resistance of 12 Ohm/sq at 84% transmission (including the glass substrate). Furthermore, AgNWs are more flexible, solution-processable, and more cost-effective than ITO. However, two challenges occur during implementation as bottom electrode in OSCs. First, their inherently high roughness causes devices to shunt. Second, the AgNW network structure exhibits – in contrast to the continuous ITO – µm²-sized voids that have to be bridged electrically by the organic layers.
In the first part of this thesis, solution-processed small molecule charge transport layers are investigated. In the case of hole transport layers (HTL), the host BF-DPB and the dopant NDP9 are investigated using tetrahydrofuran as a solvent. It is shown that BF-DPB is already doped by NDP9 in solution via the formation of a hybrid molecule complex. Solution-processed layers exhibit similar conductivities as compared to the reference deposition, which is thermal evaporation in high vacuum. The layers sufficiently smoothen the AgNW electrode such that DCV5T-Me:C60 organic solar cells with an efficiency up to 4.4% are obtained. Moreover, the influence of the square micrometer large network voids is investigated using HTLs of varying conductivity. As a result, a minimum conductivity of 1e−4 S/cm is needed to avoid macroscopic performance losses. Equivalent circuit simulations are performed to confirm these results.
As a second planarization method, the AgNWs are buried in an insulating polymer that serves concurrently as flexible and ultrathin substrate. Out of three different polymers tested, the optical adhesive ’NOA63’ gives the best results. The roughness is strongly reduced from 30 nm down to (2 ± 1) nm. Two different OSC types are employed as testing devices with fully-flexible alumina encapsulation against moisture ingress. Maximum power conversion efficiencies of 5.0% and 5.6% are achieved with a fullerene-free cascade layer architecture and a DCV5T-Me:C60 OSC, respectively. To evaluate the applicability of these fully-flexible and encapsulated devices, degradation studies are performed under continuous illumination and a humid climate. Although employing the intrinsically stable DCV5T-Me:C60 stack design, within one day a fast degradation of the fully-flexible solar cells is observed. The degradation is attributed to AgNW electrode failure that results from photo-oxidation and -sulfurization, photo-migration, and electromigration.
It is further shown that the cascade organic solar cell lacks intrinsic stability. In summary, efficient, fully-flexible, and encapsulated devices are shown. However, in terms of competitive OSCs, the low stability of AgNW electrodes is a challenge to be taken care of. In current research, this issue needs to be addressed more frequently. / Organische Solarzellen (OSZ) sind ein junges Forschungsgebiet der Photovoltaik, welches neue Anwendungsgebiete erschließt, für die herkömmliche anorganische Solarzellen nicht einsetzbar sind. Einige der Haupteigenschaften sind Flexibilität, niedriges Gewicht, Teiltransparenz und geringe Herstellungskosten. Indiumzinnoxid (ITO), der aktuelle Industriestandard transparenter Elektrodentechnologie, ist nicht in der Lage, diese Eigenschaften zu gewährleisten. Dies liegt vor allem an der Brüchigkeit von ITO und der begrenzten Verfügbarkeit von Indium, welche mit einem hohen Preis einhergeht.
Das Ziel dieser Dissertation ist die Integration einer alternativen und vielversprechenden Elektrodentechnologie: Netzwerke aus Silbernanodrähten (AgNWs). Mit einem Schichtwiderstand von 12 Ohm/sq bei einer Transmission von 84% (inklusive Glassubstrat) besitzen sie ähnliche oder sogar bessere optische und elektrische Eigenschaften als ITO. Des Weiteren sind AgNW-Elektroden flexibler und kostengünstiger als ITO und aus flüssiger Phase prozessierbar. Es gibt allerdings zwei Herausforderungen, welche die Integration als Grundelektrode in OSZ erschweren. Zum einen sind AgNW-Netzwerke sehr rauh, sodass organische Bauteile kurzgeschlossen werden. Zum anderen weisen AgNW-Elektroden, im Gegensatz zu einer vollflächigen ITO-Schicht, Lücken zwischen den einzelnen Drähten auf. Diese Lücken müssen von den organischen Schichten der OSZ elektrisch überbrückt werden.
Im ersten Teil der Arbeit werden daher flüssigprozessierte Ladungsträgertransportschichten aus kleinen Molekülen untersucht, welche die AgNW-Elektroden glätten und die verhältnismäßig großen Lücken füllen sollen. Im Falle von Lochleitschichten (HTL) wird BF-DPB als Matrix und NDP9 als Dotand in Tetrahydrofuran gelöst und zur Anwendung gebracht. BF-DPB wird dabei schon in Lösung von NDP9 dotiert, wobei sich ein Hybridmolekülkomplex ausbildet. Die Leitfähigkeit der entstehenden Schichten ist ähnlich zu Referenzschichten, die durch thermisches Verdampfen im Hochvakuum hergestellt wurden. Die erhaltenen HTLs glätten die AgNW-Elektroden, sodass DCV5T-Me:C60-Solarzellen mit einer Effizienz von maximal 4.4% hergestellt werden können. Weiterhin wird der Einfluss der quadratmikrometergroßen Löcher auf die makroskopische Effizienz der Solarzelle in Abhängigkeit der HTL Leitfähigkeit untersucht. Um signifikante Effizienzverluste zu verhindern, muss der HTL eine minimale Leitfähigkeit von etwa 1e−4 S/cm aufweisen. Simulationen eines Ersatzschaltkreises bestätigen hierbei die experimentellen Ergebnisse.
Im zweiten Teil der Arbeit wird eine Planarisierungsmethode untersucht, in welcher die AgNWs in nichtleitfähigen Polymeren eingebettet werden. Diese Polymere fungieren anschließend als flexibles Substrat. Der optische Kleber ”NOA63” erzielt hierbei die besten Ergebnisse. Die Rauheit der AgNW-Elektroden wird von etwa 30 nm auf 1 bis 3 nm stark reduziert. Anschließend werden diese AgNW-Elektroden in zwei unterschiedlichen OSZ Konfigurationen getestet und mit einer vollflexiblen Schicht aus Aluminiumoxid gegen Wasserdampfpermeation verkapselt. Somit können maximale Effizienzen von 5% mithilfe einer organischen Kaskadenstruktur und 5.6% mit DCV5T-Me:C60 OSZ erreicht werden.
Um die Anwendbarkeit dieser vollflexiblen und verkapselten OSZ zu bewerten, werden Alterungsstudien unter konstanter Beleuchtung und feuchtem Klima durchgeführt. Es wird gezeigt, dass die in das Polymer eingebettete AgNW-Elektrode aufgrund von Photooxidation und -schwefelung und Photo- und Elektromigration instabil ist. Dieser Sachverhalt ist für die Anwendung von AgNW-Elektroden in kommerziellen OSZ von großer Bedeutung und wurde in der Forschung bisher nicht ausreichend thematisiert.
|
14 |
Nanofils d'argent à dimensions maîtrisées : synthèse, toxicité et fabrication d'électrodes transparentes / Silver nanowires with controlled dimensions : synthesis, toxicity and manufacturing of transparent electrodesToybou, Djadidi 29 November 2018 (has links)
Le marché des dispositifs optoélectroniques (écrans, capteurs tactiles, cellules solaires…) transparents flexibles est en pleine expansion. Traditionnellement l’oxyde d’indium-étain (ITO) est utilisé comme électrode transparente, mais son importante fragilité mécanique couplée à une disponibilité future incertaine de l’indium (matériau classé comme critique par la commission européenne) nécessite de trouver des alternatives. Les nanofils métalliques, notamment à base d’argent, font partie des développements les plus avancés avec des performances optoélectroniques excellentes, ainsi qu’une mise en œuvre simple et des techniques d’impression bas coût compatibles avec les substrats flexibles. A l’aube d’une utilisation massive probable de ce nanomatériau, des questionnements émergent quant à leur toxicité potentielle, notamment en raison de leur facteur de forme rappelant celui de l’amiante. Ces travaux de thèse se déclinent selon trois axes : synthèse, propriétés et toxicité. L’optimisation du procédé polyol pour la synthèse des nanofils d’argent a conduit au contrôle indépendant des dimensions (diamètre et longueur). La détermination des performances optoélectroniques a permis un adressage précis des performances visées, en identifiant les morphologies adaptées à chaque domaine d’application. Le contact cutané et l’inhalation ayant été identifiés comme les principales voies d’exposition des nanofils d’argent durant leur mise en œuvre, des études de toxicité sur des fibroblastes et macrophages ont été réalisées. Ceci a permis l’identification de mécanismes biologiques différents selon la morphologie des nanofils mais également selon le type cellulaire. Ces nanofils apparaissent peu toxiques, notamment en comparaison à d’autres nanomatériaux connus. Cette approche dite « safer by design » permet in fine d’orienter la sélection des meilleurs nanofils en fonction de l’application ciblée. / The market for flexible transparent optoelectronic devices (displays, touch screens, solar cells, etc.) is expanding rapidly. Traditionally indium tin oxide (ITO) is used as a transparent conductive layer material, but its high mechanical fragility coupled with an uncertain future availability of indium (material classified as critical by the European Commission) requires alternatives material to be found. Metal nanowires, especially silver-based, are among the most advanced developments with excellent optoelectronic performances, as well as simple processing and printing techniques compatible with flexible substrates. At the dawn of a probable massive use of this nanomaterial, questions are emerging regarding to their potential toxicity, in particular because of their shape factor reminiscent of that of asbestos. This thesis is based on three axes: synthesis, properties and toxicity. The optimization of the polyol process for the synthesis of silver nanowires led to the independent control of dimensions (diameter and length). The determination of the optoelectronic performances allowed to determine the targeted performances, by identifying the morphologies adapted to each field of application. Since dermal contact and inhalation were identified as the main routes of exposure for silver nanowires during their implementation, toxicity studies on fibroblasts and macrophages were conducted. This allowed the identification of different biological mechanisms according to nanowire morphology but also according to cell type. These nanowires appear to have a low toxicity, especially when compared to other known nanomaterials. This "safer by design" approach makes possible to orient the selection of the safer nanowires according to the required performances of targeted application.
|
15 |
Desenvolvimento de filmes finos condutores transparentes de nanofios de prata depositados sobre substratos r?gidosFirmino, Sandro Fernandes 20 August 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-08-23T14:01:45Z
No. of bitstreams: 1
Sandro Fernandes Firmino_TESE.pdf: 4757608 bytes, checksum: 52ddad6a85c21dfa1d36627079848e04 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-08-27T11:21:40Z (GMT) No. of bitstreams: 1
Sandro Fernandes Firmino_TESE.pdf: 4757608 bytes, checksum: 52ddad6a85c21dfa1d36627079848e04 (MD5) / Made available in DSpace on 2018-08-27T11:37:10Z (GMT). No. of bitstreams: 1
Sandro Fernandes Firmino_TESE.pdf: 4757608 bytes, checksum: 52ddad6a85c21dfa1d36627079848e04 (MD5)
Previous issue date: 2018-08-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / This work proposes the development of a low cost protocol for the production of TCNTs based on silver nanowires (AgNWs) on rigid substrates, and the improvement of the deposition technique to obtain a higher layer homogeneous, aiming at the optimization of its optical and electrical properties. For this, silver nanowires with length and diameter control were produced, aiming to evaluate the influence of these parameters on the optical and electrical properties of TCTFs. The effects of thermal annealing on the morphology of AgNWs networks and on the electrical and optical properties of TCTFs were also investigated. Studies were carried out to improve the deposition technique to obtain more homogeneous films and, as a result of this study, a new deposition technique (VMCV - Vertical Controlled Mechanical Vibration) was developed with INPI (National Institute of Intellectual Property). Silver nanowires were synthesized through the polyol process, which uses a polymer (N-vinylpyrrolidone) (PVP) as the coating agent. The prepared solutions of AgNWs were deposited on rigid substrates (glass / silicon) for analysis of topological and chemical surfaces, resulting in a random network of nanowires. The networks of AgNWs were characterized by MEV-FEG, UV-Vis, XPS and DSC-TGA techniques. The effect of thermal annealing on the AgNWs networks was investigated by means of in situ measurements of the evolution of the electrical resistances, through the technique of two tips, on a hot plate with temperature control system. Our best results exhibit an optical transparency (~ 83% at 550 nm) equivalent to commercial metal oxide thin films (indium oxide-oxide, ITO or fluoride oxide and tin oxide, FTO) and sheet resistance of ~ 23 ? / ?. / Este trabalho tem como proposta o desenvolvimento de um protocolo de baixo custo para produ??o de TCTFs (Filmes Finos Condutores Transparentes) ? base de nanofios de prata (AgNWs) sobre substratos r?gidos, e o aperfei?oamento da t?cnica de deposi??o para a obten??o de uma camada homog?nea, visando ? otimiza??o de suas propriedades ?pticas e el?tricas. Para isto, foram produzidos nanofios de prata com controle de comprimento e di?metro, visando avaliar a influ?ncia destes par?metros sobre as propriedades ?pticas e el?tricas dos TCTFs. Tamb?m foram investigados os efeitos do recozimento t?rmico na morfologia das redes de AgNWs e sobre as propriedades el?tricas e ?pticas dos TCTFs. Foram realizados estudos para o aperfei?oamento da t?cnica de deposi??o para a obten??o de filmes homog?neos e, como resultado deste estudo, desenvolveu-se uma nova t?cnica de deposi??o (VMCV- Vibra??o Mec?nica Controlada Vertical) registrada junto ao INPI (Instituto Nacional de Propriedade Intelectual). Os nanofios de prata foram sintetizados atrav?s do processo poliol, que utiliza um pol?mero (N-vinilpirrolidona) (PVP) como o agente de cobertura. As solu??es preparadas de AgNWs foram depositadas sobre substratos r?gidos (vidro/sil?cio) para an?lises de superf?cies topol?gicas e qu?micas, resultando em uma rede aleat?ria de nanofios. As redes de AgNWs foram caracterizadas pelas t?cnicas MEV-FEG, UV-Vis, XPS e DSC-TGA. O efeito do recozimento t?rmico sobre as redes de AgNWs foi investigado por meio de medi??es in situ da evolu??o das resist?ncias el?tricas, atrav?s da t?cnica de duas pontas, sobre uma chapa quente com sistema de controle de temperatura. Nossos melhores resultados exibem uma transpar?ncia ?ptica (~ 83% a 550 nm) equivalente a das pel?culas finas de ?xido de metal comercial (?xido de ?ndio-?xido, ITO ou ?xido de fl?or e ?xido de estanho, FTO) e resist?ncia de folha de ~ 23 ?/?.
|
16 |
Organic/inorganic nanostructured materials: towards synergistic mechanical and optical propertiesGunawidjaja, Ray 29 June 2009 (has links)
Two designs of inorganic/organic hybrid micro-structures are discussed: (1) silver nanowire reinforced layer-by-layer (LbL) polyelectrolyte composite film and (2) bimetallic silver-gold core-shell nanoparticles. In this work, zero-dimensional spherical gold nanoparticles (AuNPs), one-dimensional silver nanowires (AgNWs), and two-dimensional silver nanoplates (AgNPls) represent the inorganic component. Three-arm star polymer and polyelectrolytes represent the organic component. In the first design, the one-dimensional AgNWs serves as a mechanical reinforcement for the fabrication of mechanically isotropic and anisotropic polyelectrolyte composite films. The composite film is mechanically isotropic when the AgNWs are randomly oriented, and it is anisotropic when the AgNWs are unidirectionally oriented within the LbL polyelectrolyte matrix. Furthermore, above the AgNWs percolation threshold, the AgNWs reinforced LbL composite film is electrically conductive. Therefore, it can find application in ultrathin LbL film-based sensor. In the second design, the zero-dmensional AuNPs were assembled onto one-dimensional AgNWs and two-dimensional AgNPls by means of star polymer linker, or alternatively using polyelectrolytes via electrostatics interaction. The unique feature of these bimetallic silver-gold core-shell nanoparticles is their ability to greatly enhance electric field, due to the silver-gold intra-particle interaction. This allows it to serve as a single-nanoparticle surface enhanced Raman scattering (SERS) substrate for chemical sensing.
|
17 |
Amélioration des performances d'électrodes conductrices et transparentes en modifiant le design de nanofils d'argent / Enhancing the performance of transparent electrodes through the design of new silver nanostructuresMadeira, Alexandra 10 July 2018 (has links)
Les électrodes transparentes sont les composants indispensables de nombreux dispositifsoptoélectroniques commerciaux (cellules solaires, écrans plats, écrans tactiles ou encorediodes électroluminescentes). Elles sont constituées le plus souvent d’oxyde d’indium etd'étain (ITO). Les électrodes à base d'ITO sont produites par un procédé relativementcoûteux et sont très fragiles à la contrainte mécanique, ce qui limite leur utilisation au seinde dispositifs optoélectroniques flexibles. Des matériaux alternatifs, sans indium, à base deréseaux de nano-fils d’argent, font actuellement l'objet d'un grand nombre de recherches.Ces réseaux à base de nanostructures métalliques ont des propriétés opto-électroniquescomparables voire supérieures à celles de l’ITO. Ils sont adaptables à des substrats flexibleset sont compatibles avec les procédés de dépôt « roll to roll ». L'objectif de cette thèse estd'explorer de nouvelles voies de synthèse et de modification de surface de nanofils d'argentpour développer des électrodes transparentes plus performantes. De nouvelles nanostructuresmétalliques, différentes de celles commercialisées, ont été élaborées : (i) des fils d’argentultra-longs (ii) des fils d’argent présentant une architecture inhabituelle i.e avec desramifications. Des paramètres clés du procédé polyol ont été modifiés pour élaborer les filsà facteur de forme très élevé. Ils ont permis d'accroître les performancesrésistance/transparence des dispositifs conventionnels. Des nano-fils d’argent de forme « Y» ou « V » ont également été synthétisés en soumettant le milieu de croissance à des ultrasons.Ces nanostructures devraient permettre de limiter les problèmes de conduction quiapparaissent, à l'heure actuelle, au niveau des contacts entre les fils dans les dispositifsnanostructurés. Par ailleurs, des réseaux de fils d'argent modifiés en surface avec de l'acide11-mercaptoundecanoïque (MuA) ont été élaborés. Ils constituent une solution trèsintéressante pour améliorer la stabilité chimique des réseaux métalliques. Le MuA limite l'oxydation de surface du métal et permet aux électrodes de conserver leurs transparence etconductivité initiales. / Transparent electrodes are a necessary component in a number of devices such as solar cells,flat panel displays, touch screens and light emitting diodes. The most commonly usedtransparent conductor, indium tin oxide (ITO), is expensive and brittle, the latter propertymaking it inappropriate for up-and-coming flexible devices. Films consisting of randomnetworks of solution-synthesized silver nanowires have emerged as a promising alternative toITO. They have transparency and conductivity values better than competing new technologies(e.g. carbon nanotubes films, graphene, conductive polymers, etc.) and comparable to ITO.Furthermore, these silver nanowire films are cheap, flexible, and compatible with roll-to-rolldeposition techniques. The main objectives of this PhD work are to improve the properties ofsilver nanowire electrodes and to study and solve issues that are currently hindering their usein commercial devices. Specifically, I studied the important areas of electrode conductivity andstability. To increase the conductivity of nanowire electrodes, two silver nanostructuresdifferent from what is commercially available were synthesized i) ultra-long nanowires and (ii)branched nanowires. Regarding (i), by using 1.2-propanediol as the medium rather than thetypical ethylene glycol in the polyol synthesis process, as well as the molecular weight of PVP,the temperature of the process, or the concentration of silver nitrate, we obtained silvernanowires with an aspect ratio between their lengths and diameters of 1050. Among all theultra-long silver nanowires elaborated in polyol process reported in the literature, they have themaximum length. The synthesis developed is also cheap and the reaction time takes less than2h. Moreover, they have a high yield of 2 mg/ml. Electrodes with a sheet resistance of 5 Ω/Sqfor a transparency of 94% were obtained (with post thermal treatment applied). However, thispost-deposition anneal is shown to have a small influence on the decrease of the sheetresistance. It is thus not required to elaborate electrodes with good performance, which is veryadvantageous for the elaboration of electrodes on plastic substrates. Regarding (ii), “V-like shape” or “Y-like branched” nanowires were elaborated thanks to the input of ultrasonicirradiation during the polyol process. Unfortunately, their length being short (6 μm), theirinterest is limited to enhance the performance of transparent electrodes. In addition, structuralanalyses of both branched and unbranched nanowires revealed the nanostructures notmonocrystalline. Concerning the stabilities issues, the thermal stability of silver nanowireelectrodes coated with graphene was investigated. This coating allows a better homogeneity ofthe heat through the network, decreasing the number of hot spots and thus increasing thelifetime of the electrodes. The corrosion of silver nanowire and the resulting electrode resistanceincrease over time is a severe problem hindering their use in commercial devices. 11-mercaptoundecanoic acid (MuA) was identified as a promising passivation agent of silvernanowires. Lifetime testing showed that the electrode resistance increased more slowly (12%)than any other passivated electrodes reported in the literature. Furthermore, unlike many otherpassivation methods, the MuA molecule itself does not negatively affect the conductivity ortransparency of the electrode and is very inexpensive, all contributing to the commercialviability of the passivation method.
|
18 |
Transparent electrodes based on silver nanowire networks : electrical percolation, physical properties, and applications / Électrodes transparentes à base de réseaux de nanofils d'argent : percolation électrique, propriétés physiques et applicationsSannicolo, Thomas 30 October 2017 (has links)
L’intérêt pour les électrodes transparentes (TEs) concerne un large spectre de domaines technologiques, tels que les dispositifs optoélectroniques (cellules solaires, LEDs, écrans tactiles), les films chauffants transparents, ou les applications électromagnétiques. Les TEs de nouvelle génération auront à combiner à la fois un très haut niveau de conduction électrique, de transparence optique, mais aussi de flexibilité mécanique. L’oxyde d’Indium dopé Etain (ITO) domine actuellement le marché des matériaux transparents conducteurs (TCMs). Cependant, la rareté de l’Indium, combinée à ses faibles performances en flexion mécaniques et ses coûts de fabrication élevés ont orienté les recherches vers des TCMs alternatifs. Les réseaux percolants de nanofils métalliques, en particulier les nanofils d’argent (AgNWs), se sont imposés comme l’une des alternatives les plus sérieuses à l’ITO, en raison de leurs propriétés physiques très attractives. Ces réseaux interconnectés offrent également la possibilité d’utiliser des méthodes de synthèse en voie chimique et d’impression à bas coût, sur de grandes surfaces. De manière générale, les premières estimations concernant les coûts de fabrication sont inférieures à celles de l’ITO. De plus, grâce au très haut facteur de forme des nanofils et à la nature percolante des réseaux, les besoins en quantité de matières premières nécessaires pour atteindre un haut niveau de performance sont moindres.Ce travail de thèse s’intéresse à l’étude des propriétés physiques fondamentales – inexplorées ou non encore suffisamment étudiées – des réseaux d’AgNWs, afin d’améliorer la robustesse, la fiabilité et la compatibilité de ce type d’électrodes avec les critères de performance industriels. La première partie est consacrée à l’étude des méthodes d’optimisation utilisées pour diminuer au mieux la résistance électrique des électrodes. Les mesures électriques in situ effectuées au court d’un recuit thermique et/ou après traitement chimique fournissent de précieuses informations concernant les mécanismes d’activation au niveau des jonctions entre nanofils. A l’échelle du réseau, notre capacité à distinguer les zones qui participent efficacement à la conduction électrique de celles qui seraient potentiellement inactives est un défi majeur. Pour les réseaux dont la densité en nanofils est proche du seuil de percolation, un processus d’activation discontinu de chemins efficaces de percolation à travers le réseau a pu être mis en évidence. De manière générale, l’influence de plusieurs paramètres (densité du réseau, tension, niveau d’optimisation) sur l’homogénéité et la stabilité électrique et thermique des électrodes a été étudiée, à l’aide de techniques de cartographie électrique et de simulations. A tension élevée, un processus d’emballement thermique conduisant à la formation d’une fissure physique à travers un réseau d’AgNWs soumis à des plateaux de tension croissants a pu être détecté visuellement. Des modèles de simulation via les logiciels Matlab et Comsol ont aussi été construits afin de confirmer, voire anticiper, les phénomènes observés expérimentalement. Par ailleurs, encouragés par la demande croissante pour les dispositifs électroniques portatifs en toute circonstance, des tests préliminaires ont été conduit pour évaluer le comportement des réseaux d’AgNWs sous contrainte d’étirement mécanique lorsqu’ils sont transférés sur des substrats élastiques. Ce travail de thèse a également donné lieu à l’intégration de réseaux d’AgNWs dans des dispositifs. Des études ont été menées afin d’améliorer la stabilité des films chauffants transparents à base d’AgNWs et de mieux appréhender les mécanismes favorisant l’émergence de défauts. L’utilisation des réseaux d’AgNWs pour des applications électromagnétiques (antennes, blindage) a également fait l’objet de tentatives préliminaires dont les résultats sont commentés à la fin du manuscrit. / Transparent electrodes attract intense attention in many technological fields, including optoelectronic devices (solar cells, LEDs, touch screens), transparent film heaters (TFHs) and electromagnetic (EM) applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely-used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO’s lack of flexibility and the relatively high manufacturing costs have prompted search into alternative materials. With their outstanding physical properties, silver nanowire (AgNW)-based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution-based processing, and compatibility with large area deposition techniques. First cost estimates are lower for AgNW based technology compared to current ITO fabrication processes. Unlike ITO, AgNW are indeed directly compatible with solution processes, never requiring vacuum conditions. Moreover, due to very large aspect ratio of the NWs, smaller quantities of raw materials are needed to reach industrial performance criteria.The present thesis aims at investigating important physical assets of AgNW networks – unexplored (or not explored enough) so far – in order to increase the robustness, reliability, and industrial compatibility of such technology. This thesis work investigates first optimization methods to decrease the electrical resistance of AgNW networks. In situ electrical measurements performed during thermal ramp annealing and/or chemical treatments provided useful information regarding the activation process at the NW-NW junctions. At the scale of the entire network, our ability to distinguish NW areas taking part in the electrical conduction from inactive areas is a critical issue. In the case where the network density is close to the percolation threshold, a discontinuous activation process of efficient percolating pathways through the network was evidenced, giving rise to a geometrical quantized percolation phenomenon. More generally, the influence of several parameters (networks density, applied voltage, optimization level) on the electrical and thermal homogeneity and stability of AgNW networks is investigated via a dual approach combining electrical mapping techniques and simulations. A thermal runaway process leading to a vertical crack and associated to electrical failure at high voltage could be visually evidenced via in situ electrical mapping of AgNW networks during voltage plateaus. Moreover many efforts using Matlab and Comsol softwares were devoted to construct reliable models able to fit with experimental results. Due to the increasing demand for portable and wearable electronics, preliminary tests were also conducted to investigate the stretching capability of AgNW networks when transferred to elastomeric substrates. Finally, integrations of AgNW networks in several devices were performed. Specifically, studies were conducted to understand the mechanisms leading to failure in AgNW-based transparent film heaters, and to improve their overall stability. Preliminary investigations of the benefits of incorporating of AgNW networks into electromagnetic devices such as antennas and EM shielding devices are also discussed at the end of the manuscript.
|
19 |
Electrode transparente en nanofils d’argent : intégration dans les cellules et modules photovoltaïques organiques sur substrat souple / Silver nanowire transparent electrode : integration in organic photovoltaic cells and modules on a flexible substrateLaurans, Gildas 30 June 2016 (has links)
Une cellule photovoltaïque organique (OPV) consiste en un empilement de couches minces et comporte une électrode transparente, constituée le plus souvent par une couche mince d’oxyde d’indium dopé à l’étain (ITO). Des matériaux alternatifs sans indium, déposables par voie liquide à l’air ambiant, et sur de grandes surfaces souples plus adaptées à la filière OPV, sont actuellement l’objet d’un grand nombre de recherches. Les nanofils d’argent (Ag NWs) représentent un sérieux candidat pour remplacer l’ITO et sont l’objet de ce travail de thèse. Une méthode de dépôt des Ag NWs par spray à air sur des substrats de PET a été développée en vue de réaliser des films conducteurs et transparents sur une grande surface souple. Puis ces électrodes transparentes ont été intégrées dans des cellules OPV sur substrat souple avec des rendements comparables à l’ITO. Les dépôts par voie liquide ont été privilégiés (spray-coating, Dr Blade), excepté pour l’électrode supérieure en argent, évaporée sous vide. Enfin les cellules ont été interconnectées en série pour former un module OPV, plus efficace en termes de puissance électrique délivrée. Une étude sur l’ablation sélective de couches de l’empilement OPV par laser est également présentée pour la fabrication de modules. / An organic photovoltaic (OPV) cell consists of a thin-layer stack which includes a transparent electrode, usually made of indium tin-doped oxide (ITO). Alternative, indium-free materials, deposited in air with a wet deposition process on large, flexible substrates that are more compatible with the OPV field are currently widely investigated. Silver nanowires (Ag NWs), which represent a serious candidate to replace ITO, are the subject of this thesis. In this work a method to deposit Ag NWs on PET substrates by air spray-coating has been developed : efficient patterned conductive and transparent coatings could be processed on a large, flexible substrate. This transparent electrode was then integrated in flexible and large area OPV cells, with efficiencies comparable to ITO. Wet deposition techniques were preferred except for the silver top electrode, evaporated under vacuum. OPV cells were eventually interconnected in series in order to make an OPV module, delivering a higher electrical output. A study on selective laser ablation of layers in the OPV stack is also shown towards module processing.
|
20 |
Estudo de materiais e dispositivos para eletrônica orgânica / Study of materials and devices for organic electronicsAlbano, Luíz Gustavo Simão 23 February 2018 (has links)
Submitted by Luíz Gustavo Simão Albano (luizgustavoalbano@gmail.com) on 2018-04-20T20:51:26Z
No. of bitstreams: 1
TESE_ALBANO_LGS-23-02-2018.pdf: 13982901 bytes, checksum: 09610d28485aca4fecdd9833a5f43b00 (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2018-04-23T19:56:14Z (GMT) No. of bitstreams: 1
albano_lgs_dr_bauru.pdf: 13982901 bytes, checksum: 09610d28485aca4fecdd9833a5f43b00 (MD5) / Made available in DSpace on 2018-04-23T19:56:14Z (GMT). No. of bitstreams: 1
albano_lgs_dr_bauru.pdf: 13982901 bytes, checksum: 09610d28485aca4fecdd9833a5f43b00 (MD5)
Previous issue date: 2018-02-23 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Atualmente, a eletrônica baseada em materiais orgânicos vem ganhando visibilidade no cenário científico e tecnológico devido à alta flexibilidade mecânica e baixo custo desses materiais. A fabricação de dispositivos eletrônicos baseados em materiais orgânicos e técnicas de baixo custo é um desafio pertinente e atual. Os transistores merecem destaque por serem a base da tecnologia atual. Em especial, uma arquitetura vertical comumente conhecida como VOFET (Transistor Orgânico de Efeito de Campo em Arquitetura Vertical) vem sendo explorada nos últimos anos. Entretanto, um problema comum em VOFETs é o eletrodo intermediário, o qual deve ser permeável a campos elétricos e apresentar baixa resistência de folha utilizando técnicas com baixo custo de produção. Desta forma, na primeira parte deste trabalho é apresentado o desenvolvimento de um eletrodo intermediário baseado em nanofios de prata utilizando a técnica de baixo custo conhecida como Mayer rod-coating. Os eletrodos otimizados foram aplicados em dispositivos VOFETs, resultando em transistores com densidades de corrente de 2,5 mA/cm2 e razão on/off de 5x103, utilizando tensões de operação de até 2 V. Além dos semicondutores orgânicos comumente sintetizados, corantes naturais também vêm sendo explorados para aplicações em dispositivos eletrônicos. Dentre eles, a melanina desperta atenção por ser um pigmento natural encontrado em vários sistemas biológicos. No corpo humano a melanina é responsável por funções como pigmentação, fotoproteção e termoregulação. Suas características de transporte em função da umidade associada à sua alta biocompatibilidade, tem originado considerável interesse para aplicações em dispositivos eletrônicos. Apesar de suas vantagens, quando extraída in vivo a melanina apresenta considerável irregularidade estrutural e pouca solubilidade, sendo necessário o desenvolvimento de rotas sintéticas para a obtenção de filmes finos de qualidade. Assim, na segunda parte deste trabalho, foi explorada a obtenção de filmes finos de melanina para aplicações na eletrônica orgânica. Os resultados obtidos permitiram à aplicação desse material em transistores eletroquímicos. Além disso, um estudo considerando diferentes condições de umidade relativa e pHs permitiu mostrar que sua condutividade é governada pela reação de comproporcionamento. Na terceira parte deste trabalho, foi estudada a fabricação de filmes finos utilizando diferentes porcentagens de melanina em matrizes de álcool polivinílico, para simultâneas aplicações como filtros protetores de radiação ultravioleta e capacitores orgânicos transparentes. Os filmes finos fabricados apresentaram excelente desempenho contra os raios UVA, bloqueando 100 % dos raios incidentes, além de funcionar de forma simultânea como capacitores orgânicos transparentes utilizando nanofios de prata como eletrodos. A integração dos filtros com a eletrônica orgânica permite futuras aplicações desse sistema em janelas ópticas inteligentes. Na última parte deste trabalho, foi estudada a reticulação de cadeias poliméricas do álcool polivinílico através inserção da melanina com intuito de substituir o dicromato de amônio, tradicionalmente utilizado na de reticulação do polímero. Os resultados obtidos mostraram que os filmes finos com 0,5 % de melanina apresentaram uma redução na densidade de corrente de quase duas ordens de magnitude em comparação com os filmes finos de álcool polivinílico, comportamento similar quando a reticulação é realizada com dicromato de amônio. Os resultados obtidos neste trabalho mostram a possibilidade de fabricar dispositivos eletrônicos baseados em materiais orgânicos e técnicas de baixo custo. O uso da melanina mostra ser uma alternativa interessante, pois além de sua alta biocompatibilidade, este material pode desempenhar diferentes funções em dispositivos eletrônicos. / Currently, electronics based on organic materials has been acquiring visibility in the scientific and technological scenario due to the high mechanical flexibility and low-cost of these materials. The fabrication of electronic devices based on organic materials and low-cost techniques is a relevant and current challenge. Transistors deserve attention because they are the base of our current technology. In particular, a vertical architecture commonly known as VOFET (Vertical Organic Field Effect Transistor) has been explored in recent years. However, a common issue in VOFET structure is the intermediate electrode, which must be permeable to electric fields with low sheet resistance using low-cost production techniques. Thus, in the first part of this work, the development of an intermediate electrode based on silver nanowires using the low-cost technique known as Mayer rod-coating is presented. The optimized electrodes were applied in VOFETs, resulting in devices with current densities of 2.5 mA/cm2 and on/off ratio of 5x103, using operating voltages up to 2 V. Apart from to the organic semiconductors commonly synthesized, natural dyes are also being explored in organic electronics. Among them, melanin deserves attention because it is a natural pigment found in several biological systems. In the human body melanin is responsible for functions such as pigmentation, photoprotection and thermoregulation. The humidity-dependent electrical response associated with the high biocompatibility has provided considerable interest for applications in electronic devices. However, melanin when extracted in vivo presents considerable structural irregularity and low solubility. In this way, the development of synthetic routes to obtain thin films with quality has been considered. Thus, in the second part of this work, the fabrication of melanin thin films was explored for applications in organic electronics. The results obtained allowed the application of melanin thin films in electrochemical transistors. In addition, a study considering different conditions of relative humidity allowed observe that its electronic conductivity is governed by the comproportionation reaction. In the third part of this work, the fabrication of poly(vinyl alcohol) thin films with different percentages of melanin were studied for simultaneously applications as ultraviolet filters and transparent organic capacitors. The thin films fabricated presented good performance against UVA radiation, blocking 100 % of the incident rays and working as transparent organic capacitors using silver nanowires as electrode. The integration of the filters with organic electronics allows future applications of this system in smart windows. In the last part of this work, the crosslinking of poly(vinyl alcohol) polymer chains through melanin incorporation was studied in order to replace ammonium dichromate. Ammonium dichromate is traditionally used in the poly(vinyl alcohol) crosslinking process. The results showed that the thin films with 0.5 % of melanin presented a reduction factor of almost 100 in current density when compared to the neat thin films, similar behavior when the crosslinking is performed with inorganic materials. The results obtained in this work showed the possibility to fabricate electronic devices based on organic materials and low-cost techniques. In addition, the use of melanin is an interesting alternative due to the fact that this material has high biocompatibility and can perform different functions in electronic devices. / FAPESP: 13/09963-6 / FAPESP: 13/07296-2 / FAPESP: 14/25332-9
|
Page generated in 0.1024 seconds