• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Protocol for Isolating Neural Activity of Neurons and Analyzing Their Behavior in a Pattern Separation Task

Moradi Salavat, Faraz 06 October 2023 (has links)
Understanding how the human brain works can lead to new discoveries and improved treatments for brain related diseases and disabilities such as Alzheimer's and autism. One method for studying brain activity is through electrophysiological recordings, particularly through the use of in vivo recording techniques. While these techniques have advanced significantly over the years, data analysis tools have not kept pace, making it difficult to isolate the activity of individual neurons from the recordings. In this thesis, we propose a unified protocol for isolating the spike activity of a neuron from an electrophysiology recording. Additionally, we conducted customized spike train analysis on the recorded cells in a pattern separation task. Preliminary results suggest that changes in the neural activity of mossy cells was not significant. However, for granule cells and interneurons, responses to punishment and reward were observed.
2

The Influence of Relative Subjective Value on Preparatory Activity in the Superior Colliculus as Indexed by Saccadic Reaction Times

Milstein, DAVID 26 June 2013 (has links)
Deal or no deal? Hold ‘em or fold ‘em? Buy, hold or sell? When faced with uncertainty, a wise decision-maker evaluates each option and chooses the one they deem most valuable. Scientists studying decision making processes have spent much theoretical and experimental effort formalizing a framework that captures how decision makers can maximize the amount of subjective value they accrue from such decisions. This thesis tested two hypotheses. The first was that subjective value guides our simplest and most common of motor actions similar to how it guides more deliberative economic decisions. The second was that subjective value is allocated across pre-motor regions of the brain to make our actions more efficient. To accomplish these goals, I adapted a paradigm used by behavioural economists for use in neurophysiological experiments in non-human primates. In our task, monkeys repeatedly make quick, orienting eye movements, known as saccades, to targets, which they learned through experience, had different values. In support of the hypothesis that subjective value influences simple motor actions, the speed with which monkeys responded, known as saccadic reaction time (SRT), and their saccadic choices to valued targets were highly correlated and therefore both acted as a behavioural measures of subjective value. Two complimentary results support the hypothesis that subjective value influences activity in the intermediate layers of the superior colliculus (SCi) – a well-studied brain region important to the planning and execution of saccades - to produce efficient actions. First, when saccades were elicited with microstimulation, we found that the timing and spatial allocation of pre-saccadic activity in the SC was shaped by subjective value. Second, the baseline preparatory activity and transient visual activity of SCi neurons prior to saccade generation was also influenced by subjective value. Our results can be incorporated into existing models of SC functioning that use dynamic neural field theory. I suggest that saccades of higher subjective value will result in higher activation of their associated neural field such that they will be more likely and more quickly selected. In summary, this thesis demonstrates that subjective value influences neural mechanisms, not only for deliberative decision making, but also for the efficient selection of simple motor actions. / Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2013-06-25 17:18:25.393

Page generated in 0.1218 seconds