101 |
"Geometria das singularidades de projeções" / Geometry of singularities of projectionsDias, Fabio Scalco 16 September 2005 (has links)
Neste trabalho estudamos as singularidades de projeções no plano de curvas genéricas, introduzindo uma nova relação de equivalência para germes e multigermes de curvas planas, denominada A_h-equivalência. / In this work singularities of projections to the plane of curves are studied. We introduce a new equivalence relation for germs of plane curves, called A_h-equivalence.
|
102 |
Contribution à l'analyse et à l'exploitation des singularités dans le cadre de l'amélioration en terme de précision des systèmes mécatroniques / Contribution to the analysis and exploitation the singularities to improve the precision of mechatronic systemsHijazi, Anas 01 January 2017 (has links)
Cette thèse porte sur l'analyse de la singularité d'un manipulateur plan pour l'application d'une XY-Théta plate-forme. Cette plate-forme possède une cinématique brevetée, conçue pour garder l’erreur finale de position en dessous de 2mμ dans son espace de travail de dimensions 300 mm × 300 mm. Ces performances de haute précision s'expliquent par la proximité des singularités. Certains inconvénients peuvent survenir lorsque la trajectoire se rapproche des singularités, notamment si une vitesse articulaire élevée est atteinte. Par conséquent, l'objectif principal de cette thèse est d'identifier les lieux des singularités. Habituellement, quand un robot non-redondant se déplace dans un espace à trois dimensions, le lieu de singularité est défini par une surface. Une contribution majeure de ce travail de thèse réside dans l'identification d'une ligne hélicoïdale pour définir le lieu de la singularité au sein de l'espace de travail. Une autre partie du travail réalisé a consisté à prendre en compte la redondance du robot à identifier les lieux des singularités et dans ce cas à analyser les problèmes de contrôle liés à la traversée de surfaces de singularités. En dernier lieu, une attention a été portée sur l'indice de maniabilité afin d'évaluer la distance entre le manipulateur et la singularité. / This thesis deals with the singularity analysis of a planar robotic manipulator for the application of an XY-Theta platform. This XY-Theta platform has a patented kinematics designed to keep the final position error below 2 μm in its 300 mm × 300 mm workspace. But as the high precision performances are due to the proximity of singularities, some drawbacksmay also appear when the trajectory is too close to singularities, such as large joint velocities, high forces and torques. Therefore, the main objective of this thesis is to identify the singularity loci. Usually, when a non-redundant robot operates in a 3D space, the singularity locus is represented by a surface. Here, one contribution is the identification of an helicoidal line for the singularity locus within the workspace. Another contribution is to take into account the redundancy of the robot, identify the singularity loci in this case and analyze the control problems linked to the crossing of singularity surfaces. Finally, the manipulability index is calculated to show how far the manipulator is from the singularity configuration.
|
103 |
Singularity theorems and the abstract boundary constructionAshley, Michael John Siew Leung, ashley@gravity.psu.edu January 2002 (has links)
The abstract boundary construction of Scott and Szekeres has proven a practical
classification scheme for boundary points of pseudo-Riemannian manifolds. It
has also proved its utility in problems associated with the re-embedding of exact
solutions containing directional singularities in space-time. Moreover it provides
a model for singularities in space-time - essential singularities. However the literature
has been devoid of abstract boundary results which have results of direct
physical applicability.¶
This thesis presents several theorems on the existence of essential singularities
in space-time and on how the abstract boundary allows definition of optimal em-
beddings for depicting space-time. Firstly, a review of other boundary constructions
for space-time is made with particular emphasis on the deficiencies they possess for
describing singularities. The abstract boundary construction is then pedagogically
defined and an overview of previous research provided.¶
We prove that strongly causal, maximally extended space-times possess essential
singularities if and only if they possess incomplete causal geodesics. This result
creates a link between the Hawking-Penrose incompleteness theorems and the existence of essential singularities. Using this result again together with the work of
Beem on the stability of geodesic incompleteness it is possible to prove the stability
of existence for essential singularities.¶
Invariant topological contact properties of abstract boundary points are presented
for the first time and used to define partial cross sections, which are an
generalization of the notion of embedding for boundary points. Partial cross sections
are then used to define a model for an optimal embedding of space-time.¶
Finally we end with a presentation of the current research into the relationship
between curvature singularities and the abstract boundary. This work proposes
that the abstract boundary may provide the correct framework to prove curvature
singularity theorems for General Relativity. This exciting development would culminate over 30 years of research into the physical conditions required for curvature singularities in space-time.
|
104 |
Singularidades das Superfícies Regradas em R3 / Singularities of Ruled Surface in R3Rodrigo Martins 18 February 2004 (has links)
Estudaremos as singularidades genéricas de superfécies regradas em R3. O objetivo do trabalho é mostrar que as singularidades genéricas que ocorrem no conjunto das superfícies regradas são as mesmas que ocorrem no conjunto das aplicações diferenciáveis de R2 em R3, enquanto que as singularidades genéricas das superfícies desenvolvíveis, que formam um subconjunto das superfícies regradas, são mais degeneradas. / We study generic singularities of ruled surfaces in R3. In this work we show that generic singularities appearing in the set of ruled surfaces are the same that occur in the set of map germs from R2 to R3, while the generic singularities of developable surfaces are more degenerate.
|
105 |
"Geometria das singularidades de projeções" / Geometry of singularities of projectionsFabio Scalco Dias 16 September 2005 (has links)
Neste trabalho estudamos as singularidades de projeções no plano de curvas genéricas, introduzindo uma nova relação de equivalência para germes e multigermes de curvas planas, denominada A_h-equivalência. / In this work singularities of projections to the plane of curves are studied. We introduce a new equivalence relation for germs of plane curves, called A_h-equivalence.
|
106 |
Singularidades de famílias de matrizes simétricas / Singularities of families of symmetric matricesDias, Luis Renato Gonçalves 26 February 2009 (has links)
Estudamos singularidades de famílias de matrizes simétricas. O objetivo é classificar as singularidades simples de tais famílias e estudar a geometria de alguns objetos associados a elas / We study the singularities of families of symmetric matrices. The aim of this work is to classify simple singularities of such families and study the geometry of some objects associated to them
|
107 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesCamila Mariana Ruiz 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
108 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesRuiz, Camila Mariana 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
109 |
Singularidades de famílias de matrizes simétricas / Singularities of families of symmetric matricesLuis Renato Gonçalves Dias 26 February 2009 (has links)
Estudamos singularidades de famílias de matrizes simétricas. O objetivo é classificar as singularidades simples de tais famílias e estudar a geometria de alguns objetos associados a elas / We study the singularities of families of symmetric matrices. The aim of this work is to classify simple singularities of such families and study the geometry of some objects associated to them
|
110 |
Suppression of Singularity in Stochastic Fractional Burgers Equations with Multiplicative NoiseMasud, Sadia January 2024 (has links)
Inspired by studies on the regularity of solutions to the fractional Navier-Stokes system and the impact of noise on singularity formation in hydrodynamic models, we
investigated these issues within the framework of the fractional 1D Burgers equation.
Initially, our research concentrated on the deterministic scenario, where we conducted
precise numerical computations to understand the dynamics in both subcritical and
supercritical regimes. We utilized a pseudo-spectral approach with automated resolution refinement for discretization in space combined with a hybrid Crank-Nicolson/
Runge-Kutta method for time discretization.We estimated the blow-up time by analyzing the evolution of enstrophy (H1
seminorm) and the width of the analyticity
strip. Our findings in the deterministic case highlighted the interplay between dissipative and nonlinear components, leading to distinct dynamics and the formation of
shocks and finite-time singularities.
In the second part of our study, we explored the fractional Burgers equation under
the influence of linear multiplicative noise. To tackle this problem, we employed the
Milstein Monte Carlo approach to approximate stochastic effects. Our statistical
analysis of stochastic solutions for various noise magnitudes showed that as noise
amplitude increases, the distribution of blow-up times becomes more non-Gaussian.
Specifically, higher noise levels result in extended mean blow-up time and increase its
variability, indicating a regularizing effect of multiplicative noise on the solution. This
highlights the crucial role of stochastic perturbations in influencing the behavior of
singularities in such systems. Although the trends are rather weak, they nevertheless
are consistent with the predictions of the theorem of [41]. However, there is no
evidence for a complete elimination of blow-up, which is probably due to the fact
that the noise amplitudes considered were not sufficiently large. This highlights the
crucial role of stochastic perturbations in influencing the behavior of singularities in
such systems. / Thesis / Master of Science (MSc)
|
Page generated in 0.0924 seconds