1 |
Study of sintering behaviours and mechanical properties of barium strontium cobalt iron oxide ceramicsWang, Li January 2016 (has links)
The thesis studies the sintering behaviours and mechanical properties of perovskite-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) ceramics. The sintering behaviours of BSCF are studied by sintering BSCF powder using a series of sintering temperatures and dwell times. Under all circumstances, only a cubic perovskite structure is identified in as-sintered samples. The relative density of BSCF increases with increasing sintering temperature and dwell time, but shows a more significant increase with increasing temperature. While the grain size increases with increasing sintering temperature and dwell time, it is found that the increasing temperature contributes much more significantly than increasing dwell time in grain growth. The shape of grain size distribution profile is independent of sintering temperature and dwell time, but the profile shifts with different sintering conditions. The grain maintains an aspect ratio of 1.8 irrespective of sintering conditions. Similar findings are also made on the Ni-doped BSCF, but it is found that Ni doping inhibits the grain growth and retards the densification of BSCF while it has little influence on the grain size distributions and grain aspect ratio distributions. The grain growth exponent (n) and apparent activation energy (Q) are also systematically studied. It is found that grain boundary diffusion is the dominant controlling mechanism for BSCF while both grain boundary and lattice diffusions are the equally dominant controlling mechanisms for BSCF-Ni8. The fracture stress of BSCF is measured by both three-point and ring-on-ring bending tests at room and high temperatures. The fracture stress determined by three-point bending tests is consistently higher than that value measured by ring-on-ring tests for a given temperature. By utilising Weibull statistics a close prediction is made of the three-point values from the ring-on-ring values. Compared with the Young’s modulus of BSCF obtained from three-point bending tests between RT and 800 °C, the values determined from ring-on-ring tests shows a fairly good agreement. However, the Young’s modulus measured by both bending tests is lower than that value determined by micro-indentation tests. Hardness and fracture toughness are independent of grain size and grain orientation. Porosity is the dominant factor in Young’s modulus, hardness and fracture toughness of BSCF. The intrinsic hardness, intrinsic Young’s modulus and intrinsic fracture toughness of BSCF are also determined. The subcritical crack growth (SCG) of BSCF is also studied using constant load method at RT and constant stress rate method at 800 °C. It is found that that BSCF is not susceptible to SCG at RT but becomes relatively sensitive to SCG at 800 °C. The results are subsequently used as a basis for a strength–probability–time (SPT) lifetime prediction. Ni doping increases the Young’s modulus, hardness and fracture toughness of BSCF determined micro-indentation tests at RT. Both hardness and Young’s modulus show a non-monotonic trend with Ni doping content, which is attributed to the porosity and secondary phase. The intrinsic hardness, intrinsic Young’s modulus and intrinsic fracture toughness of 8 mol% Ni-doped BSCF are determined. Dopants have little influence on grain orientation and the distribution of grain boundary misorientation angles of BSCF.
|
2 |
Ultra-low sintering temperature glass ceramic compositions based on bismuth-zinc borosilicate glassChen, M.-Y. (Mei-Yu) 06 June 2017 (has links)
Abstract
In the first part of the thesis, novel glass-ceramic compositions based on Al2O3 and BaTiO3 and bismuth-zinc borosilicate (BBSZ) glass, sintered at ultra-low temperatures, were researched. With adequate glass concentration, dense microstructures and useful dielectric properties were achieved. The composite of BaTiO3 with 70 wt % BBSZ sintered at 450 °C exhibited the highest relative permittivity, εr, of 132 and 207 at 100 kHz and 100 MHz, respectively. Thus, the dielectric properties of the composites were dominated by the characteristics of glass, BaTiO3, and Bi24Si2O40 phase, especially the contribution of Bi24Si2O40 for the samples with 70-90 wt % glass. Actually, the existence of the secondary phase Bi24Si2O40 may not hinder but enhance the dielectric properties. The Al2O3-BBSZ composition samples showed a similar situation, not only for densification but also for their microstructures and phases (Al2O3, BBSZ, Bi24Si2O40), explaining the achieved dielectric properties.
The second part of the thesis mainly discusses the composite of BaTiO3 with 50 wt % BBSZ with different thermal treatments. After sintering at 720 °C, dense microstructures and the existence of Bi4BaTi4O15, BaTiO3, Bi24Si2O40 phases were observed. The results also showed that the size of glass powder particles did not influence the dielectric properties (εr = 263-267, tan δ = 0.013 at 100 kHz) of sintered samples, but the addition of LiF degraded the dielectric properties due to the features and amount of Bi4BaTi4O15. These results demonstrate the feasibility of the BBSZ based composites for higher sintering temperature technologies as well.
At the end, a novel binder system, which enables low sintering temperatures close to 300 °C, was developed. A dielectric multilayer module containing BaTiO3-BBSZ and Al2O3-BBSZ composites with silver electrodes was co-fired at 450 °C without observable cracks and diffusions. These results indicate that these glass-ceramic composites provide a new horizon to fabricate environmentally friendly ULTCC materials, as well as multilayers for multimaterial 3D electronics packages and high frequency devices. / Tiivistelmä
Väitöstyön ensimmäisessä osassa tutkittiin ja kehitettiin uudentyyppisiä, ultramatalissa sintrauslämpötiloissa (ULTCC) valmistettuja lasi-keraami komposiitteja käyttäen vismuttisinkkiborosilikaatti -pohjaista lasia (BBSZ). Täyteaineina olivat alumiinioksidi (Al2O3) ja bariumtitanaatti (BaTiO3). Materiaaleille saatiin riittävän suuren lasipitoisuuden avulla tiheät mikrorakenteet ja sovelluskelpoiset dielektriset ominaisuudet. BaTiO3:n komposiitti, joka sisälsi 70 p-% BBSZ lasia, saavutti 450 °C lämpötilassa sintrattuna korkeimman suhteellisen permittiivisyyden: εr=132 (@100 kHz) ja εr=207 (@100 MHz). Komposiittien dielektrisiä ominaisuuksia määrittivät tällöin lasi-, BaTiO3- ja Bi24Si2O40- faasien ominaisuudet ja erityisesti Bi24Si2O40 -faasi näytteissä, joissa on 70-90 p-% lasia. Sekundäärinen faasi Bi24Si2O40 ei välttämättä heikentänyt, vaan jopa paransi dielektrisiä ominaisuuksia. Vastaavilla Al2O3-BBSZ –komposiiteilla saavutettiin samanlaisia tuloksia tihentymisen, mikrorakenteiden ja faasien (Al2O3, BBSZ, Bi24Si2O40) suhteen. Lisäksi tässä tapauksessa saavutetut dielektriset ominaisuudet voidaan selittää näiden kolmen faasin yhdistelmän olemassaololla.
Väitöstyön toinen osa käsitteli pääasiassa eritavoin lämpökäsiteltyjä BaTiO3:n komposiitteja, joissa on 50 p-% BBSZ-lasia. Näillä saavutettiin tiheä mikrorakenne sintrattaessa 720 °C lämpötilassa ja havaitiin Bi4BaTi4O15-, Bi24Si2O40-faasien muodostuminen BaTiO3 lähtöfaasin rinnalle. Tulokset osoittivat myös, että lasijauheen partikkelikoko ei vaikuttanut sintrattujen näytteiden dielektrisiin ominaisuuksiin (εr = 263-267, tan δ = 0.013 (@100 kHz)). LiF -lisäys sen sijaan heikensi dielektrisiä ominaisuuksia ja vähensi Bi4BaTi4O15 faasin muodostumista. Tämä aiheutui Bi4BaTi4O15-faasin ominaisuuksista ja oli riippuvainen kyseisen faasin määrästä. Nämä tulokset osoittivat BBSZ -pohjaisten komposiittien käytettävyyden myös korkeampien sintrauslämpötilojen teknologioihin.
Viimeisenä kehitettiin uudentyyppinen sideainesysteemi, joka mahdollistaa ultramatalien keraamien yhteissintraamisen jopa noin 300 °C lämpötilassa. Hyödyntäen kehitettyä sideainesysteemiä monikerrosrakenne, jossa käytettiin dielektrisiä BaTiO3-BBSZ- ja Al2O3-BBSZ-komposiitteja ja hopeaelektrodeja, yhteissintrattiin 450 °C lämpötilassa. Valmistetuissa rakenteissa ei havaittu murtumia eikä diffuusioita. Tulokset osoittavat, että kehitetyt lasi-keraami komposiitit mahdollistavat ympäristöystävällisten ULTCC -materiaalien valmistuksen. Lisäksi osoitettiin kehitettyjen materiaalien soveltuvuus monikerroksisten rakenteiden käyttöön monimateriaali-3D-elektroniikan pakkauksissa ja suurtaajuuskomponteissa.
|
Page generated in 0.1194 seconds