• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Writer identification using semi-supervised GAN and LSR method on offline block characters

Hagström, Adrian, Stanikzai, Rustam January 2020 (has links)
Block characters are often used when filling out forms, for example when writing ones personal number. The question of whether or not there is recoverable, biometric (identity related) information within individual digits of hand written personal numbers is then relevant. This thesis investigates the question by using both handcrafted features and extracting features via Deep learning (DL) models, and successively limiting the amount of available training samples. Some recent works using DL have presented semi-supervised methods using Generative adveserial network (GAN) generated data together with a modified Label smoothing regularization (LSR) function. Using this training method might improve performance on a baseline fully supervised model when doing authentication. This work additionally proposes a novel modified LSR function named Bootstrap label smooting regularizer (BLSR) designed to mitigate some of the problems of previous methods, and is compared to the others. The DL feature extraction is done by training a ResNet50 model to recognize writers of a personal numbers and then extracting the feature vector from the second to last layer of the network.Results show a clear indication of recoverable identity related information within the hand written (personal number) digits in boxes. Our results indicate an authentication performance, expressed in Equal error rate (EER), of around 25% with handcrafted features. The same performance measured in EER was between 20-30% when using the features extracted from the DL model. The DL methods, while showing potential for greater performance than the handcrafted, seem to suffer from fluctuation (noisiness) of results, making conclusions on their use in practice hard to draw. Additionally when using 1-2 training samples the handcrafted features easily beat the DL methods.When using the LSR variant semi-supervised methods there is no noticeable performance boost and BLSR gets the second best results among the alternatives.

Page generated in 0.1392 seconds