• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation and functional analysis of the developmentally regulated expression site associated gene 9 family in Trypanosoma brucei

Barnwell, Eleanor M. January 2009 (has links)
Trypanosoma brucei is a protozoan parasite that is the causative agent of sleeping sickness in sub-Saharan Africa. T. brucei has a complex life cycle involving passage between a mammalian host and the tsetse fly. The parasite evades the mammalian immune system via expression of Variant Surface Glycoprotein (VSG) on the cell surface. VSG genes are expressed at telomeric expression sites and at these sites are a number of Expression Site Associated Genes (ESAGs). One unusual ESAG, ESAG9, is developmentally regulated: RNA for these genes accumulates during the transition from slender to stumpy cells in the mammalian bloodstream and cellassociated protein is only detected transiently in stumpy and differentiating cells. Transgenic cell lines were generated which ectopically express one or more members of the ESAG9 gene family. Biochemical and cytological analyses using these cell lines indicated that some members of this family are glycosylated and GPI-anchored, and also that one gene, ESAG9-K69, is secreted. ESAG9-K69 is also secreted by wild-type stumpy parasites. In vivo experiments with tsetse flies did not conclusively show whether ESAG9 proteins play a role in the establishment of a tsetse fly mid-gut infection by transgenic trypanosomes. However, In vivo and ex vivo experiments using the mouse model of trypanosomiasis indicated that expression of ESAG9 proteins may alter parasitaemia in the mouse and results in a significant decrease in the proportion of CD4+ T cells in the mouse spleen.
2

Synthetic strategies for potential trypanocides

Capes, Amy January 2011 (has links)
Human African trypanosomiasis (sleeping sickness) is a devastating disease which is endemic in parts of sub-Saharan Africa. It is caused by the protozoan parasite T. brucei, which are transmitted by the bite of infected tsetse flies. Although the disease is fatal if left untreated, there is a lack of safe, effective and affordable drugs available; therefore new drugs are urgently needed. The aim of the work presented in this thesis is to develop novel trypanocidal compounds. It is divided into two parts to reflect the two distinct strategies employed to achieve this aim. The first part focuses on the inhibition of glycophosphoinositol (GPI) anchor synthesis by inhibiting the Zn2+-dependent enzyme, GlcNAc-PI de-N-acetylase. Trypanosomes have a variable surface glycoprotein (VSG) coat, which allows them to evade the human immune system. The GPI anchor attaches the VSG to the cell membrane; therefore inhibiting GPI synthesis should expose the parasite to the immune system. Initially, large substrate analogues were synthesized. These showed weak inhibition of the enzyme. Zinc-binding fragments were screened, and small molecule inhibitors based on salicylhydroxamic acid were then synthesized. These compounds showed modest inhibition, but the excellent ligand efficiency of salicylhydroxamic acid indicates this may be a promising starting point for further inhibitors. The second part details the P2 strategy. The P2 transporter is a nucleoside transporter unique to T. brucei, which concentrates adenosine. The transporter also binds and selectively concentrates compounds that contain benzamidine and diaminotriazine P2 motifs, which can enhance the potency and selectivity of these compounds. The sleeping sickness drugs melarsoprol and pentamidine contain P2 motifs. Compounds comprising a P2 targeting motif, a linker and a trypanocidal moiety were synthesized. Initially, a diaminotriazine P2 motif was attached to a trypanocidal tetrahydroquinoline (THQ) protein farnesyl transferase (PFT) inhibitor, with limited success. The P2 strategy was also applied to a non-selective, trypanocidal, quinol moiety. The quinol moiety was attached to diaminotriazine and benzamidine P2 motifs, and an increase in selectivity for T. brucei over MRC5 cells was observed.

Page generated in 0.0884 seconds