• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 85
  • 43
  • 42
  • 34
  • 13
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 622
  • 109
  • 98
  • 63
  • 52
  • 51
  • 47
  • 46
  • 45
  • 43
  • 41
  • 40
  • 39
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Synthesis, antimicrobial activity, and catalytic activity of rhodium and iridium piano stool complexes: Teaching an old dog new tricks

Duchane, Christine Marie 14 June 2019 (has links)
This dissertation describes the synthesis, antimicrobial properties, and catalytic activity of a variety of eta5-ligand rhodium and iridium complexes. Cp*RM(beta-diketonato)Cl (Cp*R = R-substituted tetramethylcyclopentadienyl ligand) complexes were found to have selective activity against Mycobacterium smegmatis, with activity highly dependent upon the substituents on the Cp*R ligand as well as on the beta-diketonato ligand. These complexes were synthesized in good yield from the reaction of the chloro bridged dimers ([Cp*RMCl2]2) with the desired beta-diketonato ligand under basic conditions. All complexes were fully characterized by 1H and 13C NMR. Twenty single crystal X-ray structures were solved. The success of these syntheses led to investigation of another beta-diketonato ligand: 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac). Though many metal complexes of this ligand are known, reaction with [Cp*MCl2]2 did not yield the desired Cp*M(hfac)Cl complexes. Instead, a variety of products were obtained, three of which were characterized crystallographically. The most interesting structure featured a non-coordinating trifluoroacetate (TFA) anion and a [Cp*Ir]3Na1O4 cubane structure, which is an unprecedented and highly unusual arrangement for iridium. Attempts to synthesize this cluster rationally through reactions of [Cp*IrCl2]2 with TFA yielded instead a chloro bridged [Cp*IrCl(TFA)] dimer. Reaction of [Cp*MCl2]2 with 1,1,1-trifluoroacetylacetonate (tfac) yielded the expected Cp*M(tfac)Cl complex, indicating that the problem lies with using hfac as a ligand for Cp*M(III) complexes. Finally, the indenyl effect was investigated for the oxidative annulation of 2-phenylimidazole with 1-phenyl-1-propyne catalyzed by a series of methyl-substituted [(indenyl)RhCl2] dimers. [(Ind*)RhCl2]2 was found to have significantly greater activity than [Cp*RhCl2]2 (100% vs. 51%). Two plausible catalytic cycles were proposed, one of which invokes a ring slip transition state. Though it is unclear if the "indenyl effect" is responsible for this differing activity, it is certainly apparent that using an indenyl ligand has a notable effect in this catalytic reaction. Cyclometalation was also investigated stoichiometrically for 2-phenyl-1H-imidazole and 1-phenylpyrazole and found to proceed readily for [(Ind*)RhCl2]2. Additionally, the crystallographic structure of a Rh+ /Rh– ionic pair was solved. Ionic pairs such as this are rarely found in the literature. / Doctor of Philosophy / This dissertation deals with the uses of a series of unusual compounds containing the metals rhodium and iridium. Though these are rare and expensive metals, the uses and benefits described in this dissertation far outweigh the costs. Overall, the compounds described in this dissertation are colorfully characterized as “piano stool” compounds because of their overall shape and appearance. The metal, either rhodium or iridium, occupies a central point in the complex. On top of the metal is a “flat” organic group that gives the appearance of the seat of the piano stool. Below the metal, there are three other groups that look like the legs of the piano stool. By appropriate choice of the metals and the surrounding groups, special properties can be designed into these “piano stool” complexes. Chapter 2 describes the synthesis of a series of complexes where the “flat” group is a variant of a five-membered carbon ring compound known as cyclopentadienyl, the metal is rhodium or iridium, and two of the three legs come from a family of compounds known as acetylacetonates (acac). This series of piano stool compounds display antimicrobial activity against a class of pathogens known as mycobacteria, an example of which causes the disease tuberculosis. Changing the cyclopentadienyl group and the acac group allows for this antimicrobial activity to be tuned. In the following chapter, attempts to make the same type of compound described in the paragraph above with fluorine-substituted acacs gave some very unexpected results. The most surprising result was a very unusual cube-shaped structure containing 3 iridium atoms, 1 sodium atom, and 4 oxygen atoms, which is an unprecedented arrangement for iridium. Finally, there is a specific example of a flat group for the piano stool known as indenyl. Indenyl is intriguing because it can change shape from a flat group to a bent group. In doing this, it provides more space around the metal for other molecules to bind. The result of this work shows that piano stool compounds created with this indenyl group are more active and selective for carrying out a catalytic reaction to make new ring systems that could have potential use in the synthesis of new flavorings, fragrances, and even pharmaceuticals.
412

An Analytical Study on the Behavior of Reinforced Concrete Interior Beam-Column Joints

Xing, Chenxi 06 August 2019 (has links)
Reinforced concrete (RC) moment frame structures make up a notable proportion of buildings in earthquake-prone regions in the United States and throughout the world. The beam-column (BC) joints are the most crucial regions in a RC moment frame structure as any deterioration of strength and/or stiffness in these areas can lead to global collapse of the structure. Thus, accurate simulations of the joint behavior are important for assessment of the local and global performance of both one-way and two-way interior BC joints. Such simulations can be used to study the flexural-shear-bond interaction, the failure modes, and sensitivity of various parameters of structural elements. Most of the existing analytical approaches for interior BC joints have either failed to account for the cyclic bond-slip behavior and the triaxial compressive state of confined concrete in the joint correctly or require so many calibrations on parameters as to render them impractical. The core motivation for this study is the need to develop robust models to test current design recommendations for 3D beam-column-slab subassemblies subjected to large drifts. The present study aims to first evaluate the flexural-shear-bond interactive behavior of two-way beam-column-slab interior connections by both finite element and nonlinear truss methodologies. The local performance such as bond-slip and strain history of reinforcing steel are compared with the experimental results for the first time. The reliability of applied finite element approach is evaluated against a series of one-way interior BC joints and a two-way interior beam-column-slab joint. The accuracy and efficiency of the nonlinear truss methodology is also evaluated by the same series of joints. Results show good agreement for finite element method against both global and local response, including hysteretic curve, local bond-slip development and beam longitudinal bar stress/strain distributions. The nonlinear truss model is also capable in obtaining satisfactory global response, especially in capturing large shear cracks. A parametric study is exhibited for a prototype two-way interior beam-column-slab joint described in an example to ACI 352R-02, to quantify several non-consensus topics in the design of interior BC connections, such as the joint shear force subjected to bidirectional cyclic loading, the development of bond-slip behavior, and the failure modes of two-way interior joints with slab. Results from connections with different levels of joint shear force subjected to unidirectional loading show that meeting the requirements from ACI 352 is essential to maintain the force transfer mechanism and the integrity of the joint. The connections achieved satisfactory performance under unidirectional loading, while the bidirectional monotonic loading decreases the joint shear force calculated by ACI 352 by 10%~26% based on current results. Poorer performance is obtained for wider beams and connections fail by shear in the joint rather than bond-slip behavior when subjected to bidirectional cyclic loading. In general, the study indicates that the ACI352-02 design methodology generally results in satisfactory performance when applied to 2D joints (planar) under monotonic and cyclic loads. Less satisfactory performance was found for cases of 3D joints with slabs. / Doctor of Philosophy / Reinforced concrete (RC) moment frames are one of the most popular structure types because of their economical construction and adaptable spaces. Moment frames consist of grid-like assemblages of vertical columns and horizontal beams joined by cruciform connections commonly labelled as beam-column joints. Because of the regularity of the grid and the ability to have long column spacing, moment frames are easy to form and cast and result in wide open bays that can be adapted and readapted to many uses. In RC structures, steel bars embedded in the concrete are used to take tensile forces, as concrete is relatively weak when loaded in tension. Forces are transferred between the steel and concrete components by so-called “bond” forces at the perimeter of the bars. The proper modeling of the behavior of bond forces inside the beam-column joints of reinforced concrete moment frames is the primary objective of this dissertation. Reinforced concrete moment frames constitute a notable proportion of the existing buildings in earthquake-prone regions in the United States and throughout the world. The beam-column joints are the most crucial elements in a RC moment frame structure as any deterioration of strength and/or stiffness in these areas can lead to global collapse of the structure. Physical experimentation is the most reliable means of studying the performance of beam-column joints. However, experimental tests are expensive and time-consuming. This is why computational simulation must always be used as a supplemental tool. Accurate simulations of the behavior of beam-column joints is important for assessment of the local and global behavior of beam-column joints. However, most of the existing analytical approaches for interior beam-column joints have either failed to account for the bond-slip behavior and the triaxial compressive state of confined concrete in the joint correctly or require so many calibration parameters as to render them impractical. The present study aims to provide reliable numerical methods for evaluating the behavior of two-way beam-column-slab interior joints. Two methods are developed. The v first method is a complex finite element model in which the beam-column joint is subdivided into many small 3D parts with the geometrical and material characteristics of each part carefully defined. Since the number of parts may be in the hundreds of thousands and the geometry and material behavior highly non-linear, setting up the problem and its solution of this problem requires large effort on the part of the structural engineer and long computation times in supercomputers. Finite element models of this type are generally accurate and are used to calibrate simpler models. The second method developed herein is a nonlinear truss analogy model. In this case the structure is modelled as nonlinear truss elements, or elements carrying only axial forces. When properly calibrated, this method can produce excellent results especially in capturing large shear cracks. To evaluate the accuracy and to quantify the current seismic design procedure for beam-column joints, a prototype two-way interior beam-column-slab joint described in an example to ACI 352R-02, the current design guide used for these elements in the USA, is analytically studied by the finite element methodology. The study indicates that the ACI352-02 design methodology generally results in satisfactory performance when applied to one-way (planar) joints under monotonic and cyclic loads. Less satisfactory performance was found for cases of three-dimensional (3D) joints with slabs.
413

Finite-element simulations of interfacial flows with moving contact lines

Zhang, Jiaqi 19 June 2020 (has links)
In this work, we develop an interface-preserving level-set method in the finite-element framework for interfacial flows with moving contact lines. In our method, the contact line is advected naturally by the flow field. Contact angle hysteresis can be easily implemented without explicit calculation of the contact angle or the contact line velocity, and meshindependent results can be obtained following a simple computational strategy. We have implemented the method in three dimensions and provide numerical studies that compare well with analytical solutions to verify our algorithm. We first develop a high-order numerical method for interface-preserving level-set reinitialization. Within the interface cells, the gradient of the level set function is determined by a weighted local projection scheme and the missing additive constant is determined such that the position of the zero level set is preserved. For the non-interface cells, we compute the gradient of the level set function by solving a Hamilton-Jacobi equation as a conservation law system using the discontinuous Galerkin method. This follows the work by Hu and Shu [SIAM J. Sci. Comput. 21 (1999) 660-690]. The missing constant for these cells is recovered using the continuity of the level set function while taking into account the characteristics. To treat highly distorted initial conditions, we develop a hybrid numerical flux that combines the Lax-Friedrichs flux and a penalty flux. Our method is accurate for non-trivial test cases and handles singularities away from the interface very well. When derivative singularities are present on the interface, a second-derivative limiter is designed to suppress the oscillations. At least (N + 1)th order accuracy in the interface cells and Nth order accuracy in the whole domain are observed for smooth solutions when Nth degree polynomials are used. Two dimensional test cases are presented to demonstrate superior properties such as accuracy, long-term stability, interface-preserving capability, and easy treatment of contact lines. We then develop a level-set method in the finite-element framework. The contact line singularity is removed by the slip boundary condition proposed by Ren and E [Phys. Fluids, vol. 19, p. 022101, 2007], which has two friction coefficients: βN that controls the slip between the bulk fluids and the solid wall and βCL that controls the deviation of the microscopic dynamic contact angle from the static one. The predicted contact line dynamics from our method matches the Cox theory very well. We further find that the same slip length in the Cox theory can be reproduced by different combinations of (βN; βCL). This combination leads to a computational strategy for mesh-independent results that can match the experiments. There is no need to impose the contact angle condition geometrically, and the dynamic contact angle automatically emerges as part of the numerical solution. With a little modification, our method can also be used to compute contact angle hysteresis, where the tendency of contact line motion is readily available from the level-set function. Different test cases, including code validation and mesh-convergence study, are provided to demonstrate the efficiency and capability of our method. Lastly, we extend our method to three-dimensional simulations, where an extension equation is solved on the wall boundary to obtain the boundary condition for level-set reinitializaiton with contact lines. Reinitialization of ellipsoidal interfaces is presented to show the accuracy and stability of our method. In addition, simulations of a drop on an inclined wall are presented that are in agreement with theoretical results. / Doctor of Philosophy / When a liquid droplet is sliding along a solid surface, a moving contact line is formed at the intersection of the three phases: liquid, air and solid. This work develops a numerical method to study problems with moving contact lines. The partial differential equations describing the problem are solved by finite element methods. Our numerical method is validated against experiments and theories. Furthermore, we have implemented our method in three-dimensional problems.
414

Response and Failure of Adhesively Bonded Automotive Composite Structures under Impact Loads

Simon, Joshua Cameron 04 February 2005 (has links)
An experimental technique for conducting low speed impact of adhesively bonded automotive composite joints is presented. Based on the use of a modified drop tower, mode I, II, and mixed mode values for critical energy release rate were determined for a composite/epoxy system and used to create a fracture failure envelope. Because load measurements become erratic and unreliable at higher test rates, displacement-based relationships were used to quantify these energy release rates. Displacement data was collected with an imaging system that utilized edge detection to determine displacement profiles, end displacements, and opening displacements where applicable. Because of the resolution of the image-based approach used, determining crack length experimentally was extremely difficult. As a result, numerical methods were developed to objectively determine the crack length based on the available experimental data in mode I, II, and mixed mode I/II configurations. This numerical method uses a nonlinear fit to determine mode I crack lengths and a theoretical model based on cubic equations for mode II and mixed-mode I/II, where the coefficients of the equations are determined by using both boundary and transition conditions that are a result of the test setup. A double cantilever beam (DCB) geometry was chosen to collect mode I data, an end-loaded split (ELS) geometry was used for mode II, and a single leg bend (SLB) geometry was used for mixed-mode I/II. These geometries were used to determine the fracture characteristics of adhesively bonded automotive composites to create fracture failure envelopes as well as provide mode I, II, and mixed-mode I/II data to be used in finite element models. The chosen adhesive exhibited unstable, stick-slip crack growth, which resulted in very few data points being collected from each static DCB specimen as well as drastic drops in energy release rate between initiation and arrest points. Unstable growth also created issues in dynamic testing, as data points surrounding these "stick-slip" events were lost due to the insufficient sampling rate of the available imaging system. Issues also arose with differences between thick and thin composite adherend specimens. These differences could result from additional curing in thick adherend composite specimens due to the adherends retaining heat. DSC testing was conducted on uncured adhesive using a 2, 5, and 10 minute hold at the cure temperature, and significant additional curing was observed between the two and five minute cures. Due to the difference in relative stiffness between the 12 and 36 ply composite, the local loading rate at the crack tip was lower in the 12 ply adherends, possibly allowing for a larger plastic zone and thus a higher energy release rate. As a result, tests were conducted on 36 ply composite specimens at rates of 1 mm/min and 0.1 mm/min to determine if there were loading rate effects. This testing showed that higher initiation energy relase rates were found at the lower test rate, thus reinforcing the local loading rate theory. Due to issues with plastic deformation in aluminum adherends, mode II and mixed-mode I/II data were collected using only composite adherends. Only one data point was collected per specimen as the crack propagated directly into the composite after initiating from the precrack, thus multiple tests were conducted to collect sufficient data for constructing a failure envelope. Once mode I, II and mixed-mode I/II fracture data was collected, a fracture failure envelope was created. This failure envelope, combined with a predetermined factor of safety, could provide some of the necessary tools for design with this adhesive/composite system. / Master of Science
415

Probabilistic Characterization of Bond Behavior at Rebar-concrete Interface in Corroded RC Structures: Experiment, Modeling, and Implementation

Soraghi, Ahmad January 2021 (has links)
No description available.
416

[en] COSSERAT RODS AND THEIR APPLICATION TO DRILL-STRING DYNAMICS / [es] ESTRUCTURAS UNIDIMENSIONALES DE COSSERAT APLICADAS A LA DINÁMICA DE COLUMNAS DE PERFORACIÓN / [pt] ESTRUTURAS UNIDIMENSIONAIS DE COSSERAT APLICADAS À DINÂMICA DE COLUNAS DE PERFURAÇÃO

HECTOR EDUARDO GOICOECHEA MANUEL 13 June 2023 (has links)
[pt] Nesta tese, a teoria das hastes de Cosserat é revisitada e aplicada à dinâmica de coluna de perfuração. O objetivo é estudar o comportamento dessas estruturas dentro de poços de petróleo curvos. Para atingir este objetivo, um modelo estrutural determinístico é construído onde as tubos de perfuração (drill-pipes) e o conjunto de fundo (bottom hole assembly) são considerados como uma estrutura unidimensional de Cosserat. Em seguida, é desenvolvida uma estratégia para tratar o contato lateral em poços com configuração curvilínea. Depois disso, o problema de contorno livre é tratado mediante uma estratégia que considera como a condição de borda evolui à medida que a estrutura de perfuração avança. Isto é feito mediante uma formulação de interação broca-rocha que deve considerar a dinâmica de corte. Para isso, uma equação extra, de advecção, é resolvida junto com as equações de movimento de Cosserat. Em seguida, alguns casos de aplicação são apresentados. Numa primeira instancia, alguns elementos do problema são avaliados separadamente. Seguidamente, eles são integrados e analisados de forma conjunta. Por exemplo, primeiramente uma coluna de perfuração sem contato de fundo (off-bottom) é simulada, ou seja, sem contato broca-rocha, para estudar o comportamento e a implementação da estratégia para o contato lateral. Aqui também são calibrados alguns dos parâmetros do modelo de atrito. Em seguida, a estratégia para contabilizar o corte na rocha é implementada em um modelo 2-DOF de baixa dimensão e em um semi-discreto onde a dinâmica de torção é modelada como uma equação de onda. Os resultados mostram que o uso de abordagens contínuas resulta mais apropriade que aquelas onde se utilizam modelos de baixa dimensãom, particularmente quando são consideradas colunas longas, e quando há interesse em analisar não apenas o comportamento da broca, mas também o comportamento do sistema mecânico ao longo dos tubos de perfuração. Isso é reforçado por outro exemplo onde a dinâmica de corte é combinada com a formulação de Cosserat. Observações semelhantes do ponto de vista qualitativo são encontradas. Resumindo os resultados obtidos, as diferenças nas previsões dadas pelos modelos de baixa dimensão e o de unidimensional de Cosserat justificam o desenvolvimento e aplicação da abordagem com esta formulação em estruturas de perfuração. Finalmente, a modo de introduzir outro aspecto importante em colunas de perfuração e que pode ser uma linha de pesquisa para continuar o trabalho, a variabilidades presente em elementos como rocha, inclui-se um caso de aplicação considerando um poço horizontal e um campo estocástico de atrito. / [en] In this thesis, the theory of Cosserat rods is applied to the dynamics of drill-strings. The main objective is to evaluate the behaviour of these strings when they move within curved wells. To achieve this goal, a deterministic structural model is constructed, where the drill-pipes and the bottom hole assembly are taken as a Cosserat rod. Next, a strategy to deal with the lateral contact in curved well configurations is developed. After that, the free boundary problem is assessed: while drilling, the boundary changes due to cutting, modifying the position of the soil and, consequently, changing the bit-rock interaction forces. For this reason, a bit-rock model that can account for the cutting dynamics is adopted, in which an extra advection equation is solved together with the equations of motion of the Cosserat rod. Next, application cases are provided. First, some effects included in the model are tested in isolation, such as the lateral friction, the lateral contact, and the cutting. After that, they are all combined. In the first analysis, an off-bottom string is simulated, i.e. without contact at the bit. This allows testing the formulation associated with the lateral contact. Also, the calibration of the lateral friction parameters is made. Following that, the strategy to account for the cutting at the bit is implemented in a low-dimensional 2-DOF model, and in a semi-discrete model with a continuous wave equation for the torsional dynamics. The results show that the use of continuous approaches is more appropriate than low-dimensional models. Especially when long columns are considered, and when there is interest in understanding not only the behaviour at the bit but also along drill-pipes. This finding is reinforced by another application where the cutting dynamics are combined with the Cosserat rod formulation. Again, similar observations from a qualitative point of view are found. Overall, the differences in the results between the lumped low-dimensional models and the continuous Cosserat rod justify the development and application of the Cosserat approach to drilling structures. Finally, an introductory stochastic analysis concerning the variability of the rock is presented as an introduction to a future line of research, where stochasticity is included. / [es] En esta tesis, la teoria de Cosserat para elementos unidimensionales es revisitada y aplicada a la simulación de columnas de perforación. El objetivo es estudiar el comportamiento de estas estructuras en pozos de geometría curva. Para alcanzar este objetivo se construye un modelo determinístico. En este modelo, los caños de perforación (drill-pipes) y el conjunto de fondo (bottom hole assembly) son modelados como una estructura unidimensional de Cosserat. Seguidamente, una estrategia para tratar con el contacto lateral en pozos curvos es desarrollada. Luego, el problema de frontera libre es estudiado: durante la perforación, la condición de borde cambia debido al cambio del perfil altimétrico del terreno, alterando su posición y consecuentemente las fuerzas asociadas a la interacción broca-roca. Por esta razón, se decide utilizar un modelo de interacción broca-roca que tiene en cuenta la dinámica del corte. En este abordaje una ecuación extra, la ecuación de advección, es resuelta en forma acoplada con las ecuaciones del movimiento de la estructura de Cosserat. Algunos ejemplos de aplicación son presentados. En una primera instancia, algunos de los elementos del problema son estudiados en forma aislada. Luego combinados en un modelo completo. Por ejemplo, el caso de una columna sin contacto de fondo (off-bottom) es tratado para evaluar el comportamiento y la implementación de la estrategia mencionada para detectar el contacto lateral. Además, se efectúa la calibración de alguno de los parámetros relacionados con la fricción lateral. Luego, la estrategia para considerar el corte en la punta es implementada en un modelo de 2-DOF, y en otro semi-discreto donde se considera un modelo de ecuación de onda para la dinámica torsional. Los resultados muestran que el uso de formulaciones continuas es más apropiado que aquellas formulaciones donde se utilizan modelos de dimensiones reducidas, particularmente cuando se estudia columnas largas donde el interés se centra en entender no solo el comportamiento de la broca sino también a lo largo de la tubería. Este resultado es reforzado por otro caso de aplicación en donde se combina la dinámica de corte con un modelo de Cosserat. Observaciones similares son vistas en el comportamiento cualitativo de la solución. En resumen, las diferencias observadas en los diferentes ejemplos de aplicación entre los modelos de dimensiones reducidas y el modelo continuo de Cosserat justifican el desarrollo y la aplicación de la teoría de Cosserat a estructuras de perforación. Finalmente, dado que uno de los objetivos planteados también es considerar la variabilidad en algunos elementos como ser las propiedades de la roca, un caso de aplicación considerando un pozo horizontal es mostrado.
417

A micromechanical model for the nonlinearity of microcracks in random distributions and their effect on higher harmonic Rayleigh wave generation

Oberhardt, Tobias 07 January 2016 (has links)
This research investigates the modeling of randomly distributed surface-breaking microcracks and their effects on higher harmonic generation in Rayleigh surface waves. The modeling is based on micromechanical considerations of rough surface contact. The nonlinear behavior of a single microcrack is described by a hyperelastic effective stress-strain relationship. Finite element simulations of nonlinear wave propagation in a solid with distributed microcracks are performed. The evolution of fundamental and second harmonic amplitudes along the propagation distance is studied and the acoustic nonlinearity parameter is calculated. The results show that the nonlinearity parameter increases with crack density and root mean square roughness of the crack faces. While, for a dilute concentration of microcracks, the increase in acoustic nonlinearity is proportional to the crack density, this is not valid for higher crack densities, as the microcracks start to interact. Finally, it is shown that odd higher harmonic generation in Rayleigh surface waves due to sliding crack faces introduces a friction nonlinearity.
418

Direct grid connection and low voltage ride-through for a slip synchronous-permanent magnet wind turbine generator

Hoffmann, Ulwin 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The slip synchronous-permanent magnet generator (SS-PMG) is a direct-driven, direct-to-grid generator for wind turbine applications. This investigation focuses on achieving automated grid connection and low voltage ride-through for a small-scale SS-PMG. To reduce cost and complexity, components such as blade pitch controllers and frequency converters are avoided. Instead, electromagnetic braking is employed to control turbine speed prior to grid synchronisation and compensation resistances are used to facilitate grid fault ride-through. The conditions under which the SS-PMG can be successfully synchronised with the grid are determined, indicating a need for speed control. An evaluation of electromagnetic braking strategies reveals that satisfactory speed control performance can be achieved when employing back-to-back thyristors to switch in the braking load. Simulations show that controlled synchronisation can be executed successfully under turbulent wind conditions. All controllable parameters are held within safe limits, but the SS-PMG terminal voltage drop is higher than desired. Compensation is developed to allow the SS-PMG to ride through the voltage dip profile specified by the Irish distribution code. It is found that a combination of series and shunt resistances is necessary to shield the SS-PMG from the voltage dip, while balancing active power transfer. The flexibility offered by thyristor switching of the shunt braking load is instrumental in coping with turbulent wind conditions and unbalanced dips. The South African voltage dip profile is also managed with conditional success. Following on from the theoretical design, the grid connection controller is implemented for practical testing purposes. Protection functions are developed to ensure safe operation under various contingencies. Before testing, problems with the operation of the thyristors are overcome. Practical testing shows that grid synchronisation can be undertaken safely by obeying the theoretically determined conditions. The speed control mechanism is also shown to achieve acceptable dynamic performance. Finally, the SS-PMG is incorporated into a functioning wind turbine system and automated grid connection is demonstrated under turbulent wind conditions. Future investigations may be focused on optimal control strategies, alternative solid-state switching schemes, and reactive power control. Low voltage ride-through should also be optimised for the South African dip profile and validated experimentally. / AFRIKAANSE OPSOMMING: Die glip-sinchroon permanente magneet generator (GS-PMG) is ‘n direkte dryf, direkte netwerkgekoppelde generator vir windturbine toepassings. Hierdie ondersoek fokus op die bereiking van ’n ge-outomatiseerde netwerkkoppeling en lae spanning deurry vir ‘n kleinskaalse GS-PMG. Om kostes en kompleksiteit te verminder, word komponente soos lemsteekbeheerders en frekwensie-omsetters vermy. In plaas daarvan word elektromagnetiese remwerking gebruik om die turbine spoed, voorgaande net-werksinchronisasie, te beheer, en word kompensasieweerstande gebruik om netwerkfoutdeurry te handhaaf. Die omstandighede waaronder die GS-PMG suksesvol met die netwerk gesinchroniseer kan word, is vasgestel en dit het die behoefte aan spoedbeheer uitgewys. ‘n Evaluering van elektromagnetiese remstrategië wys uit dat ’n bevredigende spoedbeheervermoë verkry kan word as anti-parallelle tiristors gebruik word om die remlas te skakel. Simulasies wys dat beheerde netwerksinchronisasie suksesvol uitgevoer kan word, selfs onder turbulente windtoestande. Alle beheerbare parameters is binne veilige perke gehou, maar die GS-PMG se klemspanningsval is gevind as hoë as verwag. Kompensasie is ontwikkel om die GS-PMG toe te laat om deur die spanningsvalprofiel, soos gespesifieer deur die Ierse distribusiekode, te ry. Dit is gevind dat ‘n kombinasie van serie- en parallelle weerstande nodig is om die GS-PMG teen die spanningsval te beskerm, terwyl aktiewe drywingsoordrag gebalanseer word. Die buigbaarheid wat verkry word met die tiristorskakeling van die parallele weerstand is noodsaaklik in die hanteering van turbulente windtoestande en ongebalanseerde spanningsvalle. Die Suid-Afrikaanse spanningsvalprofiel is ook met voorwaardelike sukses hanteer. In opvolg van die teoretiese ontwerp is die netwerkkoppelingsbeheerder vir praktiese toetsdoeleindes in werking gestel. Beskermingsfunksies is ontwikkel om veilige werking onder verskeie gebeurlikhede te verseker. Die probleme met die werking van die tiristors is oorkom voor die aanvang van die toetse. Die praktiese toetse bewys dat netwerksinchronisasie veilig gedoen kan word deur die teoretiese bepaalde voorwaardes te volg. Dit is ook getoon dat met die spoedbeheermeganisme aanvaarbare dinamiese gedrag verkry kan word. Ten laaste is die GS-PMG in ‘n werkende windturbinestelsel geïnkorporeer en outomatiese netwerkkoppeling is onder turbulente windtoestande gedemonstreer. Toekomstige ondersoeke kan toegespits word op optimale beheerstrategië, alternatiewe vaste toestand skakelingskemas en reaktiewe drywingsbeheer. Lae spanning deurry moet nog vir die Suid- Afrikaanse spanningsprofiel ge-optimeer en eksperimenteel bevestig word.
419

Novel electrocatalytic membrane for ammonia synthesis

Klinsrisuk, Sujitra January 2010 (has links)
Novel ceramic membrane cells of BaCe₀.₅Zr₀.₃Y₀.₁₆Zn₀.₀₄O[subscript(3-δ)] (BCZYZ), a proton-conducting oxide, have been developed for electrocatalytic ammonia synthesis. Unlike the industrial Haber-Bosch process, in this work an attempt to synthesise ammonia at atmospheric pressure has been made. The membrane cell fabricated by tape casting and solution impregnation comprises of a 200 μm-thick BCZYZ electrolyte and impregnated electrode composites. Electrocatalysts for anode and cathode were investigated. For the anode, the co-impregnation of Ni and CeO₂ provided excellent electrode performance including high catalytic activity, sintering stability and compatibility with the BCZYZ electrolyte. The best composition was the mixture of 25 wt% NiO and 10 wt% CeO₂. A symmetrical cell prepared with this electrode composition revealed low polarisation resistances of 1.0 and 0.45 Ωcm² in humidified 5% H₂/Ar at 400 and 500 °C, respectively. For the cathode, 25 wt% of impregnated Fe oxide provided a satisfactory performance in non-humidified N₂ atmosphere. Significant amounts of ammonia were produced from the single cell with Ni-CeO₂ anode and Fe oxide cathode at 400-500 °C under atmospheric pressure. Ammonia formation rate was enhanced by Pd catalyst addition and electrochemical performance was improved by Ru addition. The highest ammonia formation rate of 4 x 10⁻⁹ mols⁻¹cm⁻² was attained using the cell with a Pd-modified Fe cathode at 450 °C. The formation reaction of ammonia typically consumed around 1-2.5 % of total applied current while most of the applied current was employed in H⁺ reduction. The total current efficiency of around 90-100 % could be obtained from the membrane cells.
420

Rôle du processus de forabilité des roches dans les vibrations de torsion des systèmes de forage pétrolier

Pelfrene, Gilles 20 December 2010 (has links) (PDF)
Les outils de forage de type PDC peuvent subir d'intenses variations de leur vitesse de rotation, qui perturbent le déroulement des opérations de forage. Ce phénomène auto-entretenu, appelé stick-slip, se produit dans une variété de contextes de forage actuels et on admet généralement que l'instabilité est due à la décroissance du couple à l'outil suivant la vitesse de rotation. De nombreux dispositifs ont été introduits pour limiter son apparition, mais ni la cause physique de cette décroissance, ni le rôle joué par l'outil n'ont été clairement identifiés jusqu'à présent. Cette thèse vise à étudier, expérimentalement et théoriquement, la réponse mécanique des outils PDC lorsqu'ils sont soumis à des variations de leur vitesse de rotation. Une campagne d'essais de forabilité des roches a montré que les efforts qui s'exercent autant sur les outils PDC, que sur les taillants qui les composent, dépendent significativement de la vitesse de rotation. On a attribué ce phénomène au cisaillement dynamique d'une couche de roche broyée, compactée à l'interface entre le taillant et la saignée. Un modèle semi-empirique d'interaction dynamique outil-roche a été ajusté sur ces expériences pour prédire la réponse dynamique d'outils réels, puis validé à partir des essais sur outils de forage à l'échelle 1. Il a été couplé à un algorithme décrivant la dynamique en torsion des garnitures de forage pour calculer le risque de stick-slip associé. Le modèle développé explique non seulement, pourquoi le couple à l'outil diminue avec la vitesse de rotation mais aussi montre qu'il est possible de réduire le risque de stick-slip en sélectionnant la conception d'outil PDC appropriée.

Page generated in 0.0575 seconds