• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The behaviour of melt water within a glacial system

Tingdal, Love, Ceder, Nils January 2017 (has links)
A glacier contains of many different layers of different properties. Each layer is formed during a calendar year similar to tree rings and their layers. A glacier has two different zones, the first one referred to as accumulation zone, where the addition of snow exceeds the loss of snow. The second, the ablation zone, is the zone where the loss of snow exceeds the addition of snow. These two zones are divided by the equilibrium line, where the addition of snow equals the loss of snow. Lenses of ice, caused by the summer melt, usually divide the horizontal layers within the glacier from one another. During the winter, snow will accumulate on top of the glacier and during the upcoming summer, the same snow will partly melt due to solar radiation. Some of this meltwater will penetrate the ice lenses and the layers of snow beneath, while some of it will refreeze as the winter once again returns. As the seasons change, freshly fallen snow will be compacted and somewhat water saturated. Compaction will lead to air passages being sealed off into separate air bubbles, which also leads to a change in density; a fixed volume gets heavier due to ongoing compaction. Snow that gets compacted turns into firn which has a larger mass per volume than snow does. Further compaction leads to glacier ice. The purpose of this study is to determine what effect the ice lenses has on the permeating meltwater and whether differences in snow density have similar effects. To achieve this purpose, a glacier was simulated inside a freezing room, with the help of a box that was packed with a few layers of snow. The amount of layers represented the same amount of years for a natural glacier. The experiment was performed twice, once without ice lenses but with varying densities and once with ice lenses but with similar densities. The very top layer was dyed red to track the descending meltwater accurately. To cause the melting, five infrared lamps were used to simulate solar radiation on the very top. / En glaciär består av många olika lager med olika egenskaper. Var lager uppstår under ett kalenderår likt trädringar och de lager de består av. En glaciär har två olika zoner. Den första benämns som ackumulationszonen, där tillförseln av snö överskrider förlusten av snö. Den andra, ablationszonen, är den zon där förlusten av snö överstiger tillförseln av snö. Dessa två zoner skiljs åt av jämviktslinjen, där tillförseln av snö är lika med förlusten av snö. Islinser, som skapas av sommarens smältvatten, skiljer oftast de horisontella lagrena inom glaciären åt. Under vinterhalvåret ansamlas snö på glaciärytan och smälter delvis under sommaren av värme från solen. En del av detta smältvatten penetrerar islinserna och den underliggande snön, medan en del av det åter smälter under vintern. När säsongerna ändras kompakteras snön och blir delvis vattenmättad. Kompaktion leder till att passager inom isen separeras till enskilda luftbubblor, vilket också ökar densiteten; en specifik volym får högre massa på grund av ett ökat tryck. Snö som kompakteras övergår till firn, vilket har högre massa i förhållande till volymen än vad snö har. Fortsatt kompaktion leder till att firnen övergår till en glaciäris. Syftet med denna studie är att bestämma vilken effekt islinser har på perkolerande smältvatten och om skillnader i densitet hos snö har liknande påverkan. För att uppnå detta syfte simulerades en glaciär i ett frysrum, med hjälp av en låda som packades med några lager snö. Mängden lager representerade samma antal år i en naturlig glaciär. Experimentet utfördes två gånger, en gång utan islinser men med varierande densitet och en gång med islinser men med liknande densitet. Det översta lagret färgades rött för att kunna undersöka det sjunkande smältvattnet exakt. För att ge upphov till smältan användes fem infraröda lampor för att representera solens strålar längs ytan.
2

Snökyla för is och komfort : Möjligheter att använda snö för komfortkyla och isproduktion vid Rocklundas idrottsarenor

Vera Ibanez, Anatole January 2017 (has links)
The idea of snow cooling in this case is to save snow from winter to summer and to use it for air conditioning and for saving energy in the production of ice in hockey arenas. Today in Sweden, snow power on a large scale is used only on one place, the hospital in Sundsvall. There you’ll find a pond with 70 000 m3 of snow. The melt water in the pond is heated up while cooling down warm air from the hospital, before circulating back to the pond where it regains a low temperature passing through the snow. The idea was to examine the possibility to use such a system in Västerås, at the multiple sports arenas at Rocklunda, partly for air conditioning and partly for ice production. This work was made possible through gathering information on snow storage and on the Sundsvall snow cooling plant, by interviewing people with insight in the Sundsvall hospital and Rocklunda sports arenas and by calculating the electricity consumption, necessary amount of snow and making an LCC-analysis. For air conditioning the melt water would be used like in Sundsvall but for ice production the melt water would be used for condensing the cooling media in the heat pump at a lower temperature then it would do while cooling with air or river water during summer. Annual electricity savings of 120 and 154 MWh for the arenas were made for 2016 and 2017 when using the snow for ice production. For the air conditioning the saving were estimated to around 55 MWh per year. A snow dispatch hatch in one of the hockey arenas made an alternative to a full-scale snow cooling system. Using this hatch for temporal snow power could save up to 62 MWh per year when used for ice production and 38 MWh when used for air conditioning. The estimated costs for construction of said system proved to be too expensive for making a full-scale snow power system a reality. For ice production a storage of 103 000 m3 of snow was needed which made for a result of -57 MSEK in the LCC-analysis. For the air conditioning alone, a storage of 6 000 m3 was needed which made for a result of -4.2 MSEK. The snow dispose hatch, even without the need of snow storage, resulted in -5.9 MSEK for ice production and -1.6 MSEK for air conditioning. With more thoroughly estimations of the investment costs, together with global warming and thus bigger potential for saving energy, this might be a promising investment in the future.

Page generated in 0.0542 seconds