• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension

Nasim, Md. Talat, Ogo, T., Ahmed, Mohammed I., Randall, R., Chowdhury, H.M., Snape, K.M., Bradshaw, T.Y., Southgate, L., Lee, G.J., Jackson, I., Lord, G.M., Gibbs, J.S., Wilkins, M.R., Ohta-Ogo, K., Nakamura, K., Girerd, B., Coulet, F., Soubrier, F., Humbert, M., Morrell, N.W., Trembath, R.C., Machado, R.D. January 2011 (has links)
Yes / Heterozygous germline mutations of BMPR2 contribute to familial clustering of pulmonary arterial hypertension (PAH). To further explore the genetic basis of PAH in isolated cases, we undertook a candidate gene analysis to identify potentially deleterious variation. Members of the bone morphogenetic protein (BMP) pathway, namely SMAD1, SMAD4, SMAD5, and SMAD9, were screened by direct sequencing for gene defects. Four variants were identified in SMADs 1, 4, and 9 among a cohort of 324 PAH cases, each not detected in a substantial control population. Of three amino acid substitutions identified, two demonstrated reduced signaling activity in vitro. A putative splice site mutation in SMAD4 resulted in moderate transcript loss due to compromised splicing efficiency. These results demonstrate the role of BMPR2 mutation in the pathogenesis of PAH and indicate that variation within the SMAD family represents an infrequent cause of the disease.

Page generated in 0.0606 seconds