• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scaling limit for the diffusion exit problem

Almada Monter, Sergio Angel 01 April 2011 (has links)
A stochastic differential equation with vanishing martingale term is studied. Specifically, given a domain D, the asymptotic scaling properties of both the exit time from the domain and the exit distribution are considered under the additional (non-standard) hypothesis that the initial condition also has a scaling limit. Methods from dynamical systems are applied to get more complete estimates than the ones obtained by the probabilistic large deviation theory. Two situations are completely analyzed. When there is a unique critical saddle point of the deterministic system (the system without random effects), and when the unperturbed system escapes the domain D in finite time. Applications to these results are in order. In particular, the study of 2-dimensional heteroclinic networks is closed with these results and shows the existence of possible asymmetries. Also, 1-dimensional diffusions conditioned to rare events are further studied using these results as building blocks. The approach tries to mimic the well known linear situation. The original equation is smoothly transformed into a very specific non-linear equation that is treated as a singular perturbation of the original equation. The transformation provides a classification to all 2-dimensional systems with initial conditions close to a saddle point of the flow generated by the drift vector field. The proof then proceeds by estimates that propagate the small noise nature of the system through the non-linearity. Some proofs are based on geometrical arguments and stochastic pathwise expansions in noise intensity series.
2

Metastability of Morse-Smale dynamical systems perturbed by heavy-tailed Lévy type noise

Michael Högele, Ilya Pavlyukevich January 2014 (has links)
We consider a general class of finite dimensional deterministic dynamical systems with finitely many local attractors each of which supports a unique ergodic probability measure, which includes in particular the class of Morse–Smale systems in any finite dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavytailed Lévy type noise of small intensity ε > 0. Specifically we consider perturbations leading to a Itô, Stratonovich and canonical (Marcus) stochastic differential equation. The respective asymptotic first exit time and location problem from each of the domains of attractions in case of inward pointing vector fields in the limit of ε-> 0 has been investigated by the authors. We extend these results to domains with characteristic boundaries and show that the perturbed system exhibits a metastable behavior in the sense that there exits a unique ε-dependent time scale on which the random system converges to a continuous time Markov chain switching between the invariant measures. As examples we consider α-stable perturbations of the Duffing equation and a chemical system exhibiting a birhythmic behavior.

Page generated in 0.0655 seconds