• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation of the Bound Entangled Smolin State and Entanglement Witnesses for Low-Dimensional Unitary Invariant States

Nordling, Emil January 2010 (has links)
<p>Quantum entanglement is employed as a resource throughout quantum information science. However, before entanglement can be put to intelligent use, the issues of its production and detection must be considered. This thesis proposes four schemes for producing the bound entangled Smolin state. Three of these schemes produce the Smolin state by means of general quantum gates acting on different initial states - an all-zero state, a GHZ-state and two combined Bell states. The fourth scheme is based on one-qubit operations acting on two-photon states produced by SPDC. Furthermore, a maximum overlap entanglement witness detecting entanglement in the Smolin state is derived. This witness is measurable in three measurement settings with the maximal noise tolerance p=2/3. Lastly, simplified entanglement witnesses for the 4-, 6- and 8-qubit unitary invariant states are derived. These witnesses are measurable in three measurement settings with noise tolerances p=0.1802..., p=0.1502... and p=0.0751..., respectively.</p>
2

Generation of the Bound Entangled Smolin State and Entanglement Witnesses for Low-Dimensional Unitary Invariant States

Nordling, Emil January 2010 (has links)
Quantum entanglement is employed as a resource throughout quantum information science. However, before entanglement can be put to intelligent use, the issues of its production and detection must be considered. This thesis proposes four schemes for producing the bound entangled Smolin state. Three of these schemes produce the Smolin state by means of general quantum gates acting on different initial states - an all-zero state, a GHZ-state and two combined Bell states. The fourth scheme is based on one-qubit operations acting on two-photon states produced by SPDC. Furthermore, a maximum overlap entanglement witness detecting entanglement in the Smolin state is derived. This witness is measurable in three measurement settings with the maximal noise tolerance p=2/3. Lastly, simplified entanglement witnesses for the 4-, 6- and 8-qubit unitary invariant states are derived. These witnesses are measurable in three measurement settings with noise tolerances p=0.1802..., p=0.1502... and p=0.0751..., respectively.

Page generated in 0.0282 seconds