491 |
Mercury flux from naturally enriched bare soils during simulated seasonal cyclingWalters, Nicholas 06 September 2013 (has links)
Mercury (Hg) is a potent human toxin and a persistent global pollutant with unique properties and environmental behaviours which make it difficult to model and understand. While anthropogenic mercury sources are well understood along with the impacts on ecosystems and human populations, the processes and transformations which govern environmental cycling lack the same level of understanding. Concentrations in Arctic environments are a specific concern, along with cycling behaviours in regions spanning from temperate to Arctic climates. The objective of this experiment was the investigation and characterization of the mechanisms which promote elemental mercury (Hg^0) flux from soils in these environments during simulated seasonal cycling. A laboratory scale experiment was conducted which used a Dynamic Flux Chamber (DFC) to monitor Hg^0 flux from a naturally Hg enriched soil during temperature cycling relevant to cold environments. The results, which were split into freeze-thaw (FT) and sub-zero (SZ) cycles, showed that Hg^0 flux from frozen soils remains active during temperature cycling. During FT cycles, Hg^0 flux is controlled by soil temperature and energy entering the system, with a linear increase in flux for increases in energy. This response is produced from the entire soil column. During SZ cycles, Hg^0 flux is produced only in the thin soil surface layer and is controlled by the air temperature at the soil-air interface. A decrease in the DFC air temperature was observed to produce an increase in flux, with an inverse relationship controlled by a separate mechanism than the FT cycle response. Recommendations for modifications to the experimental set-up and methodology have been made to improve the accuracy of the results and confirm the behaviours characterized during this study. / Natural Sciences and Engineering Research Council of Canada (NSERC)
|
492 |
Ecological land classification and soil moisture modelling in the boreal forest using LiDAR remote sensingSOUTHEE, FLORENCE MARGARET 20 December 2010 (has links)
Ecological land classification (ELC) is used to classify forest types in Ontario based on ecological gradients of soil moisture and nutrient fertility determined in the field. If ELC could be automated using terrain surfaces generated from airborne Light Detection and Ranging (LiDAR) remote sensing, it would enhance our ability to carry out forest ecosite classification and inventory over large areas. The focus of this thesis was to determine if LiDAR-derived terrain surfaces could be used to accurately quantify soil moisture in the boreal forest at a study site near Timmins, Ontario for use in ELC systems. Analysis was performed in three parts: (1) ecological land classification was applied to classify the forest plots based on soil texture, moisture regime and dominant vegetation; (2) terrain indices were generated at four different spatial resolutions and evaluated using regression techniques to determine which resolution best estimated soil moisture; and (3) ordination techniques were applied to separate the forest types based on biophysical field measurements of soil moisture and nutrient availability. The results of this research revealed that no single biophysical measurement alone could completely separate forest types; furthermore, the best LiDAR-derived terrain variables explained only 36.5% of the variation in the soil moisture in this study area. These conclusions suggest that species abundance data (i.e., indicator species) should be examined in tandem with biophysical field measurements and LiDAR data to improve classification accuracy. / Thesis (Master, Geography) -- Queen's University, 2010-12-16 18:52:04.81
|
493 |
Impact of Mountain Pine Beetle Attack on Water Balance of Lodgepole Pine Forests in AlbertaPina Poujol, Pablo Cesar Unknown Date
No description available.
|
494 |
Nitrogen and moisture distributions under subirrigated soybeansPapadopoulos, Anastasios K. January 1994 (has links)
A field lysimeter experiment was conducted on a sandy loam soil during the 1990 and 1991 growing seasons. The experiment tested the effects of different watertables on soybean yields, and on moisture distribution and nitrogen concentration of the soil profile. The watertable depths were 40, 60, 80, and 100 centimeters (cm). / Yields were measured in terms of number of beans per plant, number of pods per plant, number of beans per pod, and seed protein content at harvest. / Soil samples collected at depths of 30 and 70 cm from the soil surface were analyzed for moisture content and NO$ sb3 sp-$-N and NH$ sb4 sp+$-N concentrations. / The experimental results showed that controlled watertable management increased the yield and decreased soil NO$ sb3 sp-$-N levels. The best results from the watertables tested were found to be at 60 and 80 cm. This is suggested as the range of watertable depths that should be maintained for optimum soybean production.
|
495 |
Simulation of soil moisture migration from a point sourceKhatri, Krishanlal C. January 1984 (has links)
A computer model simulating moisture migration in soil from a drip source considering root water extraction (RWE) was developed. The model was formulated using Continuous System Modeling Program (CSMP). / A two-dimensional non-linear unsaturated transient flow equation was solved using the principle of mass conservation and Darcy's law on soils of dwarf-apple orchards located in southwestern Quebec. A finite axisymmetric cylinder with homogeneous, isotropic and non-swelling soil was considered for the simulations. No flow conditions across the boundaries of the cylinder were fixed. The initial soil moisture contents in the soil profile observed in the field were input for the simulations. / The macroscopic approach was used to compute RWE as a function of (THETA), Z and t. The RWE was assumed to be equal to evapotranspiration (EP) which was estimated using temperatures and the solar radiation index of the location. / The moisture contents in the soil profile observed at the termination of emitter discharge were in close agreement with the simulated values. The soil moisture distribution was found to depend on the amount of water remaining in the soil and soil moisture retention characteristics. It is independent of the rate of emitter discharge, the depth of root zone and method of application.
|
496 |
Frequency domain reflectometry for irrigation scheduling of cover crops.Gebregiorgis, Mussie Fessehaye. January 2003 (has links)
A well-managed irrigation scheduling system needs a rapid, preCIse, simple, costeffective
and non-destructive soil water content sensor. The PRl profile probe and
Diviner 2000 were used to determine the timing and amount of irrigation of three cover
crops (Avena sativa L., Secale cereale L. and Lolium multiflonlm Lam.), which were
planted at Cedara, KwaZulu-Natal. The PRl profile probe was first calibrated in the
field and also compared with the Diviner 2000. For the calibration of the PRl profile
probe the factory-supplied parameters (aJ = 8.4 and ao = 1.6) showed good correlation·
compared to the soil-estimated parameters (aJ = 11.04 and ao = 1.02). The factorysupplied
parameters gave a linear regression coefficient (r2
) of 0.822 and root mean
square error (RMSE) of 0.062. The soil-estimated parameter showed a linear regression
coefficient of 0.820 with RMSE of 0.085. The comparison between the soil water
content measured using the PR1 profile probe and Diviner 2000 showed a linear
regression coefficient of 0.947 to 0.964 with a range of RMSE of 0.070 to 0.109
respectively for the first 100 to 300 mm soil depths. The deeper depths (400, 600 and
1000 mm) showed a linear regression coefficient ofO.716to 0.810 with a range of 0.058
to 0.150 RMSE. These differences between the shallow and deeper depths could be due
to soil variability or lack of good contact between the access tube and the surrounding
soil. To undertake irrigation scheduling using the PRl profile probe and Diviner
2000, the soil water content limits were determined using field, laboratory and
regression equations. The field method was done by measuring simultaneously the soil
water content using the PR1 profile probe and soil water potential using a Watermark
sensor and tensiometers at three depths (100, 300 and 600 mm) from a 1 m2 bare plot,
while the soil dries after being completely saturated. The retentivity function was
developed from these measurements and the drained upper limit was estimated to be
0.355 m3 m-3 when the drainage from the pre-wetted surface was negligible. The lower
limit was calculated at -1500 kPa and it was estimated to be 0.316 m3m,3. The available
soil water content, which is the difference between the upper and lower limit, was equal
to 0.039 m3 m,3. In the laboratory the soil water content and matric potential were
measured from the undisturbed soil samples taken from the edge of the 1 m2 bare plot
before the sensors were installed. Undisturbed soil samples were taken using a core
sampler from 100 to 1000 mm soil depth in three replications in 100 mm increments.
These undisturbed soil samples were saturated and subjected to different matric
potentials between -1 to -1500 kPa. In the laboratory, the pressure was increased after
the cores attained equilibrium and weighed before being subjecting to the next matric
potential. The retentivity function was then developed from these measurements. The
laboratory method moved the drained upper limit to be 0.390 m3 m,3 at -33 kPa and the
lower limit be 0.312 m3m-3 at -1500 kPa. The regression equation, which uses the bulk
density, clay and silt percentage to calculate the soil water content at a given soil water
potential, estimated the drained upper limit to be 0.295 m3m-3at -33 kPa and the lower
limit 0.210 m3 m,3 at -1500 kPa. Comparison was made between the three methods
using the soil water content measured at the same soil water potential. The fieldmeasured
soil water content was not statistically the same with the laboratory and
estimated soil water content. This was shown from the paired-t test, where the
probability level (P) for the laboratory and estimated methods were 0.011 and 0.0005
respectively at 95 % level of significance. However, it showed a linear regression
coefficient of 0.975 with RMSE of 0.064 when the field method was compared with the
laboratory method. The field method showed a linear regression coefficient of 0.995
with RMSE of 0.035 when compared with the estimated method.
The timing and amount of irrigation was determined using the PR1 profile probe
and Diviner 2000. The laboratory measured retentivity function was used to define the fill (0.39 m3 m-3
) and high refill point (0.34 m3 m-3
). The soil water content was
measured using both sensors two to three times per week starting from May 29 (149 day
of year, 2002) 50 days after planting until September 20 (263 day of year) 11 days
before harvesting. There were five irrigations and twenty rainfall events. The next date
of irrigation was predicted graphically using, the PRl profile probe measurements, to be
on 3 September (246 day of year) after the last rainfall event on 29 August (241 day of
year) with 8 mm. When the Diviner 2000 was used, it predicted two days after the PRl
profile probe predicted date. This difference appeared since the Diviner 2000-measured
soil water content at the rooting depth was slightly higher than the PRl profile probe
measurements. The amount of irrigation was estimated using two comparable methods
(graphic and mathematical method). The amount of irrigation that should have been
applied on 20, September (263 day of year) to bring the soil water content to field
capacity was estimated to be 4.5 hand 23 mm graphically and 5.23 hand 20 mm
mathematically. The difference between these two methods was caused due to the error
encountered while plotting the correct line to represent the average variation in soil
water content and cumulative irrigation as a function of time.
More research is needed to find the cause for the very low soil water content
measurements of the PRI profile probe at some depths. The research should be focused
on the factors, which could affect the measurement of the PRl profile probe and Diviner
2000 like salinity, temperature, bulk density and electrical conductivity. Further
research is also needed to extend the non-linear relationship between the electrical
resistance of the sensor and soil water potential up to -200 kPa. This non-linear equation
of the Watermark is only applicable within the range of soil water potential between -10
and -100 kPa. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
|
497 |
Estimation of reference evaporation and comparison with ET-gage evaporimeterAbezghi, Tekeste Weldegabrial. January 2003 (has links)
Accurate estimation of reference evaporation is necessary for the estimation of actual evaporation for irrigation and water resource management purposes. Estimation of reference evaporati~n using the Penman-Monteith method using automatic weather station (AWS)measurements requires the available energy to be accurately estimated. The available energy of short grass of 0.12 m was measured using a component net radiometer and soil heat flux plate measurements at the Faculty of Sciences and Agricultural (Agrometeorological station, University of Natal, Pietermaritzburg, latitude ~29.79 oS, longitude ~ 30.95 °E, altitude ~ 650 m). In an attempt to evaluate the accuracy of commonly used procedures of estimating available energy, estimates of net irradiance (from net long wave irradiance and reflection coefficient estimate) and soil heat flux density were compared to the actual measurements. The linear approximation of atmosphere minus crop surface emittance based on air temperature was compared with measured net long wave irradiance and similar empirical formulations. The underestimation of the measured net long wave irradiance was observed using the linear approach. Furthermore, a plot of measured clear sky net long wave irradiance and air temperature showed a logarithmic relation. The estimated reflected solar irradiance was overestimated for the reference crop. The measured soil heat flux density was observed to vary not only with net irradiance but also with cloudiness, wind speed and soil water content. The soil heat flux density measured with plates was noticed to follow the measured net irradiance. The sensitivity of Penman-Monteith latent heat estimate was investigated for the use of estimated reflection coefficient and soil heat flux density as well as ignored soil heat flux density. Results showed the latent heat estimate to be greater when soil heat flux density was ignored. Reduced set assumptions of Penman-Monteith were assessed usmg the microclimatic measurements. The grass reference evaporation estimate using estimated water vapour pressure from the pervious day minimum air temperature and approximated wind speed were found to be seasonal and procedure dependent. The hourly-reduced set estimate of reference evaporation was in good agreement with the grass Penman-Monteith estimate. The estimated daily water vapour pressure underestimated the daily grass Penman-Monteith estimate. The sensitivity of the reduced set reference evaporation estimate was compared for the two values of approximated wind speeds. The assumption of 2 m S-1 wind speed gave a relatively better result. The sensitivity of the surface temperature energy balance (STEB) estimate of reference evaporation was investigated using two different atmospheric stability procedures. The evaporation estimate agreement and performance of the technique were found to vary depending on the stability correction procedure. The Monteith (1973) correction procedure was observed to be more sensitive to a higher surface-air temperature difference. The Monteith (1973) procedure was found to underestimate the reference evaporation and this resulted in a lower correlation coefficient. The uncorrected and Campbell and Norman (1998) stability corrected procedure of STEB estimate overestimated the reference evaporation but resulted in good agreement with actual reference evaporation. The use of estimated available energy using the STEB method resulted in a 7 % overestimate of measured available energy. Different designs of atmometers have been used to measure evaporation. The less expensive and simple ET_gageR (Model A and E) atmometer for daily evaporation measures were compared to grass-based and alfalfa-based Penman-Monteith and STEB estimate of reference evaporation. Two different evaporation surface covers used with the device allowed for the comparison to be made. Measurements using the canvas 30 ET-gage cover for grass reference evaporation were compared to grass based Penman-Monteith and STEB reference evaporation estimates. Correlation between the canvas 30 measures and Penman-Monteith estimates were good compared to the STEB estimate. The ET-gage canvas 54 measures were in a good agreement with alfalfa based Penman-Monteith reference evaporation estimate. There was, however, a slight time lag in ET-gage evaporation with ET-gage evaporation continuing accumulation when the reference evaporation was zero. The sensitivity of the ET-gage for microclimate variation was tested using the measurements made for two levels and three different microclimates. A shade measurement of reference evaporation was overestimated. The response of the ET-gage to one and two meter microclimate measures was similar to the short grass measurement. Furthermore, the ET-gage surface evaporation estimate using the STEB method showed equal response to the ET-gage surface for the microclimate measure and explained the possible cause of the lag of the ET-gage response. Accurate microclimate measurements is a requirement for the performance of the PenmanMonteith approach for the estimation of reference evaporation. The investment cost required for an AWS set up is high. Alternative options for gathering information of the microc1imate measurements required for calculating reference evaporation were assessed in terms of cost saving, accuracy and other advantages. A weather station system using a Hobo H8 logger (internal relative humidity and air temperature sensor and two external channels, one which was used for solar irradiance measurements) was found to be a cost-effective method for calculating the necessary microclimatic information for calculating reference evaporation. With this system reference evaporation was estimated with reasonable accuracy, at 16 % of the cost of normal AWS system. The use of an Event Hobo logger and an ET-gage was found to provide a reasonable estimate of reference evaporation. The use of the reduced set evaporation weather station was found to be unreasonable in terms of cost and accuracy. Air temperature and relative humidity were measured from different design of radiation shields and Stevenson screens. The use of home-made seven-plate plastic radiation shields provided a similar shield to radiation and ventilation compared to manufactured shields. At a low solar angle when wind speed was very low, all the radiation shields including the small Stevenson screens showed a higher air temperature difference relative to the standard Stevenson screen. The highest average difference of air temperature measurement was measured within the small Stevenson screen and metal-radiation shield. The home-made plastic radiation shield showed similar averages of air temperature and water vapour pressure difference compared to the six- and twelve-plate Gill radiation shields. The home-made metal radiation shield showed relatively higher deviation from the mean being cold at night time and hot during the day. More research is needed to explore the efficiency of the ET-gage evaporation from variety of microclimates to establish the cause of the overestimate under shade, to develop better relation of clear day net long wave irradiance and air temperature and the use of a wind speed sensor with Hobo H8 weather station system. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
|
498 |
Process and modelling studies in forest hydrology.Summerton, Mark John. January 1995 (has links)
The demand for timber products in South Africa, and consequently afforestation, is
increasing. There exists, however, abundant experimental evidence that trees utilise more
soil water than other dryland crops. Because water is limited in South Africa, decision
makers therefore currently face the challenge of determining a socially, and economically
acceptable afforestation management plan to enable the reconciliation of increased timber
demand with scarce water supply. This challenge, and the subsequent decisions that need
to be made, may be accomplished by making use of suitable simulation models to predict
the impacts of the forest hydrological system on water resources. Currently, these impacts
are assessed through an Afforestation Permit System (APS) which is based on a model now
acknowledged to have become outdated. In this dissertation an enhanced ACRU Forest
Decision Support System (FDSS), now called the ACRU Forest model, is developed and
proposed as a tool for modelling forest hydrological impacts on water resources.
Research for this study included a literature survey, fieldwork at two locations, viz. at
forest irrigation trials at Mkuze in northern KwaZulu-Natal, and at forest site preparation
trials near Ugie in the Eastern Cape, as well as the evaluation, for purposes of model
development, of a series of workshops. Results from the fieldwork experiments show that
large tree water use potentials are possible if water is not limiting, although a water supply
threshold exists at about 1400mm.annum-1, above which diminishing growth returns occur.
Furthermore, trees display improved growth on more intensive forest site preparations, but
at the expense of higher water usage rates. A series of workshops which had as the main
objective the extraction of expert knowledge by stimulating responses to prepared questions
and by constructive discussion on relative issues pertaining to forest hydrological
modelling, yielded valuable information. This information, together with that gleaned
from the literature, the fieldwork and a new Quaternary catchment database for South
Africa, was used to develop the ACRU Forest model.
The PC-based ACRU Forest model has the potential to aid decision makers by providing
an initial indication of the impacts of afforestation on water resources, within a matter of
minutes. An example of the model's application is used to demonstrate its operation,
relative accuracy and its potential benefits in simulating hydrological responses to
afforestation. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1995.
|
499 |
Greenhouse gas emissions from grassland pasture fertilized with liquid hog manureTremorin, Denis Gerald 17 November 2009 (has links)
A study was conducted in 2004 and 2005 to determine the effect of liquid hog manure fertilization on greenhouse gas emissions from the surface of a grassland pasture in south-eastern Manitoba. The objectives of this research were to determine the effects of manure application, itstiming and soil moisture on greenhouse gas emissions from pasture soil, cattle dung and urine patches. Nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissions were determined from grassland soil surface, and from cattle dung and artificial urine patches. Liquid hog manure treatments were no manure (Control); 153 kg ha-1 of available-nitrogen (N) (two year average) in spring (Spring); and 149 kg ha-1 as half-rate applications in fall and spring (Split). Four field experiments were conducted on grassland plots. The static-vented chamber technique was used to estimate gas emission rates. Two of the experiments focused on the effects of manure application timing and soil moisture on greenhouse gas emissions from the grassland soil surface. The other two experiments focused on the effects of manure application and soil moisture on greenhouse gas emissions from cattle dung and artificial urine patches. Fresh cattle dung was collected from steers grazing adjacent pastures receiving the same three manure treatments. Artificial cattle urine treatments were generated by converting blood urea concentrations of the steers into urine-N concentrations.
Manure application increased (P≤0.01) cumulative N2O emissions from the grassland soil surface with Control, Split and Spring treatments averaging 7, 43 and 120 mg N2O-N m-2, respectively. Of the two manure treatments, the Spring treatment emitted higher (P≤0.10) N2O emissions than the Split treatment. Soil moisture was a major factor influencing the quantity and type of greenhouse gas emissions, with saturated areas emitting CH4 during warm periods, whereas drier areas emitted N2O. Nitrous oxide emissions from these dry areas were higher in manure-treated plots. Spring application increased root density by 45% in the top 5 cm of soil compared to the Control. An increase in soil organic carbon with root density may offset any increase in greenhouse gas emissions caused by manure treatment.
Cattle dung from Split and Spring treatments had higher cumulative N2O emissions (30 and 82 mg N2O-N m-2, respectively) compared to dung from Control pastures (6 mg N2O-N m-2) over two study years. Dung from the Spring treatment emitted more N2O (P≤0.01) than the other two treatments. All cattle dung patches emitted CH4 after deposition though unaffected by manure treatment. Artificial urine having highest N concentration had greater (P≤0.05) cumulative N2O emissions (690 mg N2O-N m-2) than urine with the lowest N concentration (170 mg N2O-N m-2). Drier soil locations emitted more N2O from cattle dung and artificial urine patches than wetter areas.
This study demonstrated that Split application of liquid hog manure to grassland emitted less N2O than a complete application in spring. Moisture greatly affected the location of N2O and CH4 emissions. Drier areas emitted more N2O than wetter ones. Particularly, the findings indicate a need to assess grassland on periodically saturated soils as sources rather than sinks for CH4. Application of manure increased greenhouse gas emissions from cattle dung and urine patches with urine potentially having the greatest impact because of their higher emissions of N2O. An increase in root growth seems to offset greenhouse gas emissions from manure application.
|
500 |
Agronomic and physiological aspects of nitrogen and water management for monocrop corn and corn competing with a ryegrass intercropZhou, Xiaomin, 1962- January 1996 (has links)
Concern about NO$ sb3 sp-$-N leaching and groundwater pollution from monoculture corn (Zea mays L.) has prompted investigation of alternative production systems which reduce N leaching. Both intercrop systems and water table controls alone have been shown to increase nitrogen (N) uptake and reduce soil NO$ sb3 sp-$-N accumulation in cropping systems. There is a need to maintain crop productivity while reducing the potential for soil NO$ sb3 sp-$-N leaching into groundwater. However, there has been no information available regarding agronomic and physiological aspects of N and water management for monocrop corn and corn competing with annual Italian ryegrass (Lolium multiflorum Lam) in an intercrop system. A study was conducted in southwestern Quebec during 1993 and 1994. Nitrogen and dry matter components in the plant-soil system were determined. Intercropped corn grain yield did not differ from monocropped corn under high N fertility. At harvest, the corn-annual ryegrass intercrop system increased total aboveground N uptake by 77.2 and 50.7 kg ha$ sp{-1}$ when compared with the corn monocrop system in 1993 and 1994, respectively. The intercrop system reduced the amount of NO$ sb3 sp-$-N in the top 1 m of soil by 47% (92.3 kg N ha$ sp{-1}$) at harvest in 1993. Water table controls had little effect on corn yield, N use efficiency and soil NO$ sb3 sp-$-N accumulation over the two years of this study. Both plant establishment and weather conditions affected the ability of annual ryegrass to aid in the uptake of soil NO$ sb3 sp-$-N. The reproductive development of water stressed plants after silking was limited more by overall plant changes due to water stress than assimilate supply. The delivery of C (sucrose) and N ($ sp{15}$N urea) into corn plants via stem-injection showed that externally supplied C changed both the source strength (photosynthetic inhibition) and sink strength (decreased total grain production), while distribution of $ sp{15}$N was affected by p
|
Page generated in 0.0991 seconds