• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplicidade de soluções positivas de uma equação de Schrödinger não linear / Multiple positive solutions for a nonlinear Schrödinger equations

Bonutti, Moreno Pereira 05 March 2010 (has links)
Este trabalho é dedicado ao estudo da existência de soluções da equação de Schrödinger \'DELTA\'u + (\'lambda\' a(x) + 1)u = \' u POT. p, u > 0 em \'R POT. N\', onde a \'> ou =\' 0 é uma função contínua e p > 1 é um expoente subcrítico. Métodos Variacionais são empregados para mostrar a existência de uma sequência \' lambda\' IND. n\' \' SETA\' + \'INFINITO\' e da respectiva sequência de soluções \'u IND. lambda IND. n\' convergindo para uma solução de energia mínima do problema de Dirichlet - \'DELTA\' u + u = \'u POT. p\', ; u > 0em \'OMEGA\', u = 0 sobre \'partial\'\' OMEGA\", sendo \"OMEGA\' := int \'a POT. -1\' (0). Além disso, estuda-se o efeito da topologia do conjunto \'OMEGA\' sobre o número de soluções da equação (*) por meio da categoria de Lusternik e Schnirelman / This work is devoted to study the existence of positive solutions of the Schrödinger equation \'DELTA\'u + (\'lambda\'a(x) + 1)u = \' u POT. p\', u > 0 in \'R POT. N\', where a is a nonnegative and continuous function and p > 1 is a subcritical exponent. Variational methods are employed in order to show the existence of a sequence \'lambda\' IND. n\' \"ARROW\' + \'THE INFINITE\' and the respective sequence of solutions converging in \'H POT. 1\' (\'R POT.N\' ) to a least energy solution of the Dirichlet problem - \'DELTA\'u + u = \'u POT. p\' ; u > 0 in \'OMEGA\', u = 0 on \'partial\' \' OMEGA\', where \'OMEGA\' : = int \'a POT. -1 (0) Furthermore, it is studied the effect of the topology of the set \'OMEGA\' on the number of positive solutions of the equation (*) by using the Lusternik and Schnirelman category
2

Multiplicidade de soluções positivas de uma equação de Schrödinger não linear / Multiple positive solutions for a nonlinear Schrödinger equations

Moreno Pereira Bonutti 05 March 2010 (has links)
Este trabalho é dedicado ao estudo da existência de soluções da equação de Schrödinger \'DELTA\'u + (\'lambda\' a(x) + 1)u = \' u POT. p, u > 0 em \'R POT. N\', onde a \'> ou =\' 0 é uma função contínua e p > 1 é um expoente subcrítico. Métodos Variacionais são empregados para mostrar a existência de uma sequência \' lambda\' IND. n\' \' SETA\' + \'INFINITO\' e da respectiva sequência de soluções \'u IND. lambda IND. n\' convergindo para uma solução de energia mínima do problema de Dirichlet - \'DELTA\' u + u = \'u POT. p\', ; u > 0em \'OMEGA\', u = 0 sobre \'partial\'\' OMEGA\", sendo \"OMEGA\' := int \'a POT. -1\' (0). Além disso, estuda-se o efeito da topologia do conjunto \'OMEGA\' sobre o número de soluções da equação (*) por meio da categoria de Lusternik e Schnirelman / This work is devoted to study the existence of positive solutions of the Schrödinger equation \'DELTA\'u + (\'lambda\'a(x) + 1)u = \' u POT. p\', u > 0 in \'R POT. N\', where a is a nonnegative and continuous function and p > 1 is a subcritical exponent. Variational methods are employed in order to show the existence of a sequence \'lambda\' IND. n\' \"ARROW\' + \'THE INFINITE\' and the respective sequence of solutions converging in \'H POT. 1\' (\'R POT.N\' ) to a least energy solution of the Dirichlet problem - \'DELTA\'u + u = \'u POT. p\' ; u > 0 in \'OMEGA\', u = 0 on \'partial\' \' OMEGA\', where \'OMEGA\' : = int \'a POT. -1 (0) Furthermore, it is studied the effect of the topology of the set \'OMEGA\' on the number of positive solutions of the equation (*) by using the Lusternik and Schnirelman category

Page generated in 0.0975 seconds