• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Late glacial to Holocene climate and vegetation changes on the Tibetan Plateau inferred from fossil pollen records in lacustrine sediments

Wang, Yongbo January 2011 (has links)
The past climate in central Asia, and especially on the Tibetan Plateau (TP), is of great importance for an understanding of global climate processes and for predicting the future climate. As a major influence on the climate in this region, the Asian Summer Monsoon (ASM) and its evolutionary history are of vital importance for accurate predictions. However, neither the evolutionary pattern of the summer monsoon nor the driving mechanisms behind it are yet clearly understood. For this research, I first synthesized previously published Late Glacial to Holocene climatic records from monsoonal central Asia in order to extract the general climate signals and the associated summer monsoon intensities. New climate and vegetation sequences were then established using improved quantitative methods, focusing on fossil pollen records recovered from Tibetan lakes and also incorporating new modern datasets. The pollen-vegetation and vegetation-climate relationships on the TP were also evaluated in order to achieve a better understanding of fossil pollen records. The synthesis of previously published moisture-related palaeoclimate records in monsoonal central Asia revealed generally different temporal patterns for the two monsoonal subsystems, i.e. the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM). The ISM appears to have experienced maximum wet conditions during the early Holocene, while many records from the area affected by the EASM indicate relatively dry conditions at that time, particularly in north-central China where the maximum moisture levels occurred during the middle Holocene. A detailed consideration of possible driving factors affecting the summer monsoon, including summer solar insolation and sea surface temperatures, revealed that the ISM was primarily driven by variations in northern hemisphere solar insolation, and that the EASM may have been constrained by the ISM resulting in asynchronous patterns of evolution for these two subsystems. This hypothesis is further supported by modern monsoon indices estimated using the NCEP/NCAR Reanalysis data from the last 50 years, which indicate a significant negative correlation between the two summer monsoon subsystems. By analogy with the early Holocene, intensification of the ISM during coming decades could lead to increased aridification elsewhere as a result of the asynchronous nature of the monsoon subsystems, as can already be observed in the meteorological data from the last 15 years. A quantitative climate reconstruction using fossil pollen records was achieved through analysis of sediment core recovered from Lake Donggi Cona (in the north-eastern part of the TP) which has been dated back to the Last Glacial Maximum (LGM). A new data-set of modern pollen collected from large lakes in arid to semi-arid regions of central Asia is also presented herein. The concept of "pollen source area" was introduced to modern climate calibration based on pollen from large lakes, and was applied to the fossil pollen sequence from Lake Donggi Cona. Extremely dry conditions were found to have dominated the LGM, and a subsequent gradually increasing trend in moisture during the Late Glacial period was terminated by an abrupt reversion to a dry phase that lasted for about 1000 years and coincided with the first Heinrich Event of the northern Atlantic region. Subsequent periods corresponding to the warm Bølling-Allerød period and the Younger Dryas cold event were followed by moist conditions during the early Holocene, with annual precipitation of up to about 400 mm. A slightly drier trend after 9 cal ka BP was then followed by a second wet phase during the middle Holocene that lasted until 4.5 cal ka BP. Relatively steady conditions with only slight fluctuations then dominated the late Holocene, resulting in the present climatic conditions. In order to investigate the relationship between vegetation and climate, temporal variations in the possible driving factors for vegetation change on the northern TP were examined using a high resolution late Holocene pollen record from Lake Kusai. Moving-window Redundancy Analyses (RDAs) were used to evaluate the correlations between pollen assemblages and individual sedimentary proxies. These analyses have revealed frequent fluctuations in the relative abundances of alpine steppe and alpine desert components, and in particular a decrease in the total vegetation cover at around 1500 cal a BP. The climate was found to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, after the 1500 cal a BP threshold in vegetation cover was crossed the vegetation appears to have been affected more by extreme events such as dust storms or fluvial erosion than by the general climatic trends. In addition, pollen spectra over the last 600 years have been revealed by Procrustes analysis to be significantly different from those recovered from older samples, which is attributed to an increased human impact that resulted in unprecedented changes to the composition of the vegetation. Theoretical models that have been developed and widely applied to the European area (i.e. the Extended R-Value (ERV) model and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model) have been applied to the high alpine TP ecosystems in order to investigate the pollen-vegetation relationships, as well as for quantitative reconstructions of vegetation abundance. The modern pollen–vegetation relationships for four common pollen species on the TP have been investigated using Poaceae as the reference taxa. The ERV Submodel 2 yielded relatively high PPEs for the steppe and desert taxa (Artemisia Chenopodiaceae), and low PPEs for the Cyperaceae that are characteristic of the alpine Kobresia meadows. The plant abundances on the central and north-eastern TP were quantified by applying these PPEs to four post-Late Glacial fossil pollen sequences. The reconstructed vegetation assemblages for the four pollen sequences always yielded smaller compositional species turnovers than suggested by the pollen spectra, indicating that the strength of the previously-reported vegetation changes may therefore have been overestimated. In summary, the key findings of this thesis are that (a) the two ASM subsystems show asynchronous patterns during both the Holocene and modern time periods, (b) fossil pollen records from large lakes reflect regional signals for which the pollen source areas need to be taken into account, (c) climate is not always the main driver for vegetation change, and (d) previously reported vegetation changes on the TP may have been overestimated because they ignored inter-species variations in pollen productivity. / Das Paläoklima in Zentralasien, besonders in der Hochebene von Tibet (HT), ist von großer Bedeutung um globale Klimaprozesse zu verstehen und mögliche Voraussagung für die zukunft zu treffen. Als wichtigstes Klimaphänomen nehmen der asiatische Sommermonsun (ASM) und seine Entwicklungsgeschichte eine Schlüsselposition ein. Dennoch sind derzeit weder das Entwicklungsschema noch der antreibende Vorgang ausreichend verstanden. Dies gilt insbesondere für das Holozän, für welches große Kimaschwankungen und regionale Diskrepanzen weithin belegt sind. Deshalb habe ich zuerst holozäne Klimadaten zusammengefasst. Bereits veröffentlichte Publikationen aus den Monsungebieten Zentralasiens dienten als Grundlage, um die wichtigsten Klimasignale und die zugehörigen Intensitäten des Sommermonsuns heraus zu arbeiten. Anhand von Pollensequenzen aus tibetischen Seen erzeugte ich neue Klima- und Vegetationssequenzen, welche auf verbesserten quantitativen Methoden und rezenten Datensätzen beruhen. Außerdem wurden die Verhältnisse Pollen-Vegetation und Vegetation-Klima bewertet, um Schlussfolgerungen fossiler Pollensequenzen zu verbessern. Die Zusammenfassung der zuvor veröffentlichten, niederschlagsbezogenen Paläoklimadaten im Monsungebiet Zentralasiens ergab generell unterschiedliche Muster für die zwei Teilsysteme des ASMs, den Indischen Sommermonsun (ISM) und den Ostasiatischen Sommermonsun (OASM). Der ISM weist maximale feuchte Bedingungen während des frühen Holozöns auf, während viele Datensätze aus dem Gebiet des OASMs einen relativ trockenen Zustand anzeigen, besonders im nördlichen Zentralchina, wo maximale Niederschläge während des mittleren Holozäns registriert wurden. Genaue Betrachtungen der Antriebsfaktoren des Sommermonsuns ergaben, dass der ISM hauptsächlich durch Veränderungen der Sonneneinstrahlung auf der Nordhemisphäre angetrieben wird, während der OASM potentiell durch den ISM beherrscht wird - dies führt zu asynchronen Entwicklungen. Diese Hypothese wird durch rezente Monsunindizes gestützt. Sie weisen eine signifikant negative Korrelation zwischen den beiden Sommermonsun-Teilsystemen auf. Für die quantitative Klimarekonstruktion von Pollensequenzen wurde ein Sedimentkern aus dem See Donggi Cona im Nordosten der HT analysiert, der bis zum letzten glazialen Maximum (LGM) zurückdatiert wurde. Aufgrund der Tatsache, dass Donggi Cona ein relativ großer See ist, wird hiermit ein neuer Pollen-Klima-Kalibrierungsdatensatz auf Grundlage großer Seen in ariden und semiariden Regionen Zentralasiens vorgelegt. Das Konzept des Pollenherkunftsgebietes wurde in diese rezente, pollenbasierte Klimakalibrierung eingebracht und auf die Pollensequenz von Donggi Cona angewendet. Die Auswertung ergab, dass extrem trockene Bedingungen während des LGM (ca. 100 mm/yr) vorherrschten. Ein ansteigender Trend von Niederschlägen während des späten Glazials wurde durch einen abrupten Rückgang zu einer etwa 1000-jährigen Trockenphase beendet, welche mit Heinrich-Ereignis 1 in der Nordatlantik-Region übereinstimmt. Danach entsprechen die Klimaperioden dem warmen Bølling/Allerød und dem Kälteereignis der Jüngeren Dryas. Anschließend herrschten feuchte Bedingungen im frühen Holozän (bis zu 400 mm/yr). Ein etwas trockenerer Trend nach dem Holozänen Klimaoptimum wurde dann von einer zweiten Feuchtphase abgelöst, welche bis 4,5 cal. ka vor heute andauerte. Relativ gleichmäßige Bedingungen dominierten das späte Holozän bis heute. Die Klimadynamik seit dem LGM wurde vor allem durch Entgletscherung und Intensitätsschwankungen des ASM bestimmt. Bei der Betrachtung des Vegetation-Klima-Verhältnisses habe ich die zeitlichen Variationen der bestimmenden Faktoren hinsichtlich der Vegetationsdynamik auf der nördlichen HT untersucht. Dabei wurden hochauflösende holozäne Pollendaten des Kusai-Sees verwendet. Eine Redundanzanalyse (RDA) wurde angewendet um die Korrelation zwischen Pollenvergesellschaftungen und individuellen sedimentären Klimaanzeigern als auch die damit verbundene Signifikanz zu bewerten. Es stellte sich heraus, dass das Klima einen wichtigen Einfluss auf den Veränderungen in der Vegetation besaß, wenn die Bedingungen relativ warm und feucht waren. Trotzdem scheint es, dass, dass die Vegetation bei zu geringer Bedeckung stärker durch Extremereignisse wie Staubstürme oder fluviale Erosion beeinflusst wurde. Pollenspektren der vergangen 600 Jahre erwiesen sich als signifikant unterschiedlich verglichen mit den älterer Proben, was auf verstärkten anthropogenen Einfluss hindeutet. Dieser resultierte in einem beispiellosen Wandel in der Zusammensetzung der Vegetation. In Hinsicht auf das Pollen-Vegetation-Verhältnis und der quantitativen Rekonstruktion der Vegetationshäufigkeit habe ich theoretische Modelle, welche für europäische Regionen entwickelt und weithin angewendet wurden, respektive die Modelle "Extended R-Value" (ERV) sowie "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS), auf die hochalpinen Ökosysteme der HT überführt. Dafür wurden rezente Pollen-Vegetations-Verhältnisse von vier weit verbreiteten Pollen-Arten der HT überprüft. Poaceae wurden als Referenztaxa verwendet. Bei der Anwendung dieser Verhältnisse auf vier Pollensequenzen, welche die Paläoumweltbedingungen seit dem letzten Glazial widerspiegeln, wurden die Häufigkeiten von Pflanzen auf der zentralen und nordöstlichen HT quantifiziert. Anteile von Artimisia und Chenopodiaceae waren dabei im Vergleich zu ihren ursprünglichen Pollenprozenten deutlich verringert. Cyperaceae hingegen wies eine relative Zunahme in dieser Vegetationsrekonstruktion auf. Die rekonstruierten Vegetationsvergesellschaftungen an den Standorten der vier Pollensequenzen ergaben stets geringere Umwälzungen in der Artenzusammensetzung, als durch die Pollenspektren zu vermuten gewesen wäre. Dies kann ein Hinweis darauf sein, dass die Intensität der bislang angenommenen Vegetationsveränderungen überschätzt worden ist. Zusammengefasst sind die Hauptresultate dieser Dissertation, dass (a) die zwei ASM Teilsysteme asynchrone Muster während des Holozäns und heute aufweisen, dass (b) fossile Pollensequenzen großer Seen regionale Klimasignale widerspiegeln sofern die Herkunftsgebiete der Pollen berücksichtigt werden, dass (c) Klima nicht immer der Haupteinflussfaktor für Vegetationswandel ist und dass (d) das Ausmaß von Vegetationsveränderungen in zuvor veröffentlichten Studien auf der Hochebene von Tibet überschätzt worden sein kann, weil Diskrepanzen der Pollenproduktivität zwischen den Arten nicht einbezogen wurden.
2

Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from Northeastern India

Breitenbach, Sebastian January 2009 (has links)
Recent years witnessed a vast advent of stalagmites as palaeoclimate archives. The multitude of geochemical and physical proxies and a promise of a precise and accurate age model greatly appeal to palaeoclimatologists. Although substantial progress was made in speleothem-based palaeoclimate research and despite high-resolution records from low-latitudinal regions, proving that palaeo-environmental changes can be archived on sub-annual to millennial time scales our comprehension of climate dynamics is still fragmentary. This is in particular true for the summer monsoon system on the Indian subcontinent. The Indian summer monsoon (ISM) is an integral part of the intertropical convergence zone (ITCZ). As this rainfall belt migrates northward during boreal summer, it brings monsoonal rainfall. ISM strength depends however on a variety of factors, including snow cover in Central Asia and oceanic conditions in the Indic and Pacific. Presently, many of the factors influencing the ISM are known, though their exact forcing mechanism and mutual relations remain ambiguous. Attempts to make an accurate prediction of rainfall intensity and frequency and drought recurrence, which is extremely important for South Asian countries, resemble a puzzle game; all interaction need to fall into the right place to obtain a complete picture. My thesis aims to create a faithful picture of climate change in India, covering the last 11,000 ka. NE India represents a key region for the Bay of Bengal (BoB) branch of the ISM, as it is here where the monsoon splits into a northwestward and a northeastward directed arm. The Meghalaya Plateau is the first barrier for northward moving air masses and receives excessive summer rainfall, while the winter season is very dry. The proximity of Meghalaya to the Tibetan Plateau on the one hand and the BoB on the other hand make the study area a key location for investigating the interaction between different forcings that governs the ISM. A basis for the interpretation of palaeoclimate records, and a first important outcome of my thesis is a conceptual model which explains the observed pattern of seasonal changes in stable isotopes (d18O and d2H) in rainfall. I show that although in tropical and subtropical regions the amount effect is commonly called to explain strongly depleted isotope values during enhanced rainfall, alone it cannot account for observed rainwater isotope variability in Meghalaya. Monitoring of rainwater isotopes shows no expected negative correlation between precipitation amount and d18O of rainfall. In turn I find evidence that the runoff from high elevations carries an inherited isotopic signature into the BoB, where during the ISM season the freshwater builds a strongly depleted plume on top of the marine water. The vapor originating from this plume is likely to memorize' and transmit further very negative d18O values. The lack of data does not allow for quantication of this plume effect' on isotopes in rainfall over Meghalaya but I suggest that it varies on seasonal to millennial timescales, depending on the runoff amount and source characteristics. The focal point of my thesis is the extraction of climatic signals archived in stalagmites from NE India. High uranium concentration in the stalagmites ensured excellent age control required for successful high-resolution climate reconstructions. Stable isotope (d18O and d13C) and grey-scale data allow unprecedented insights into millennial to seasonal dynamics of the summer and winter monsoon in NE India. ISM strength (i. e. rainfall amount) is recorded in changes in d18Ostalagmites. The d13C signal, reflecting drip rate changes, renders a powerful proxy for dry season conditions, and shows similarities to temperature-related changes on the Tibetan Plateau. A sub-annual grey-scale profile supports a concept of lower drip rate and slower stalagmite growth during dry conditions. During the Holocene, ISM followed a millennial-scale decrease of insolation, with decadal to centennial failures resulting from atmospheric changes. The period of maximum rainfall and enhanced seasonality corresponds to the Holocene Thermal Optimum observed in Europe. After a phase of rather stable conditions, 4.5 kyr ago, the strengthening ENSO system dominated the ISM. Strong El Nino events weakened the ISM, especially when in concert with positive Indian Ocean dipole events. The strongest droughts of the last 11 kyr are recorded during the past 2 kyr. Using the advantage of a well-dated stalagmite record at hand I tested the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect sub-annual to sub-decadal changes in element concentrations in stalagmites. The development of a large ablation cell allows for ablating sample slabs of up to 22 cm total length. Each analyzed element is a potential proxy for different climatic parameters. Combining my previous results with the LAICP- MS-generated data shows that element concentration depends not only on rainfall amount and associated leaching from the soil. Additional factors, like biological activity and hydrogeochemical conditions in the soil and vadose zone can eventually affect the element content in drip water and in stalagmites. I present a theoretical conceptual model for my study site to explain how climatic signals can be transmitted and archived in stalagmite carbonate. Further, I establish a first 1500 year long element record, reconstructing rainfall variability. Additionally, I hypothesize that volcanic eruptions, producing large amounts of sulfuric acid, can influence soil acidity and hence element mobilization. / Stalagmiten erfuhren in den letzten Jahren vermehrt Aufmerksamkeit als bedeutende Paläoklima- Archive. Paläoklimatologen sind beeindruckt von der grossen Zahl geochemischer und physikalischer Indikatoren (Proxies) und der Möglichkeit, präzise absolute Altersmodelle zu erstellen. Doch obwohl substantielle Fortschritte in der speleothem-basierten Klimaforschung gemacht wurden, und trotz hochaufgelöster Archive aus niederen Breiten, welche zeigen, das Umweltveränderungen auf Zeitskalen von Jahren bis Jahrtausenden archiviert und rekonstruiert werden können, bleibt unser Verständnis der Klimadynamik fragmentarisch. Ganz besonders gilt dies für den Indischen Sommermonsun (ISM) auf dem Indischen Subkontinent. Der ISM ist heute als ein integraler Bestandteil der intertropischen Konvergenzzone verstanden. Sobald dieser Regengürtel während des borealen Sommer nordwärts migriert kann der ISM seine feuchten Luftmassen auf dem Asiatischen Festland entladen. Dabei hängt die Stärke des ISM von einer Vielzahl von Faktoren ab. Zu diesen gehören die Schneedicke in Zentralasien im vorhergehenden Winter und ozeanische Bedingungen im Indischen und Pazifschen Ozean. Heute sind viele dieser Faktoren bekannt. Trotzdem bleiben deren Mechanismen und internen Verbindungen weiterhin mysteriös. Versuche, korrekte Vorhersagen zu Niederschlagsintensität und Häufigkeit oder zu Dürreereignissen zu erstellen ähneln einem Puzzle. All die verschiedenen Interaktionen müssen an die richtige Stelle gelegt werden, um ein sinnvolles Bild entstehen zu lassen. Meine Dissertation versucht, ein vertrauenswürdiges Bild des sich wandelnden Holozänen Klimas in Indien zu erstellen. NE Indien ist eine Schlüsselregion für den östlichen Arm des ISM, da sich hier der ISM in zwei Arme aufteilt, einen nordwestwärts und einen nordostwärts gerichteten. Das Meghalaya Plateau ist das erste Hindernis für die sich nordwärts bewegenden Luftmassen und erhält entsprechend exzessive Niederschläge während des Sommers. Die winterliche Jahreszeit dagegen ist sehr trocken. Die Nähe zum Tibetplateau einerseits und der Bucht von Bengalen andererseits determinieren die Schlüsselposition dieser Region für das Studium der Interaktionen der den ISM beeinflussenden Kräfte. Ein Fundament für die Interpretation der Paläoklimarecords und ein erstes wichtiges Ergebnis meiner Arbeit ist ein konzeptuelles Modell, welches die beobachteten saisonalen Veränderungen stabiler Isotope (d18O und d2H) im Niederschlag erklärt. Ich zeige, das obwohl in tropischen und subtropischen Regionen meist der amount effect zur Erklärung stark negativer Isotopenwerte während starker Niederschläge herangezogen wird, dieser allein nicht ausreicht, um die Isotopenvariabilität im Niederschlag Meghalaya's zu erklären. Die Langzeitbeobachtung der Regenwasserisotopie zeigt keine negative Korrelation zwischen Niederschlagsmenge und d18O. Es finden sich Hinweise, das der Abfluss aus den Hochgebirgsregionen Tibets und des Himalaya eine Isotopensignatur an das Oberflächenwasser der Bucht von Bengalen vererbt. Dort bildet sich aus isotopisch stark abgereicherten Wässern während des ISM eine Süsswasserlinse aus. Es ist wahrscheinlich, das Wasserdampf, der aus dieser Linse stammt, ein Isotopensignal aufgeprägt bekommt, welches abgereichertes d18O weitertransportiert. Der Mangel an Daten lässt es bisher leider nicht zu, quantitative Aussagen über den Einfluss dieses plume effect' auf Niederschläge in Meghalaya zu treffen. Es lässt sich allerdings vermuten, das dieser Einfluss auf saisonalen wie auch auf langen Zeitskalen variabel ist, abhängig vom Abfluss und der Quellencharacteristik. Der Fokus meiner Arbeit liegt in der Herauslösung klimatischer Signale aus nordostindischen Stalagmiten. Hohe Urankonzentrationen in diesen Stalagmiten erlaubt eine exzellente Alterskontrolle, die für hochauflösende Klimarekonstruktionen unerlässlich ist. Die stabilen Isotope (d18O und d13C), sowie Grauwertdaten, erlauben einmalige Einblicke in die Dynamik des Sommer und auch des Wintermonsun in NE Indien. Die ISM Stärke (d. h. Niederschlagsmenge) wird in Veränderungen in den d18Ostalagmites reflektiert. Das d13C Signal, welches Tropfratenänderungen speichert, dient als potenter Indikator für winterliche Trockenheitsbedingungen. Es zeigt Ähnlichkeit zu temperaturabhängigen Veränderungen auf dem Tibetplateau. Das sub-annuell aufgelöste Grauwertprofil stärkt das Konzept, das verminderte Tropfraten und langsameres Stalagmitenwachstum eine Folge von Trockenheit sind. Während des Holozäns folgte der ISM der jahrtausendelangen Verringerung der Insolation. Es finden sich aber ebenso rapide Anomalien, die aus atmosphärischen Veränderungen resultieren. Die Phase des höchsten Niederschlages und erhöhter Saisonalität korrespondiert mit dem Holozänen Thermalen Maximum. Nach einer Phase einigermassen stabilen Bedingungen begann vor ca. 4500 Jahren ENSO einen zunehmenden Einfluss auf den ISM auszuüben. Starke El Nino Ereignisse schwächen den ISM, besonders wenn diese zeitgleich mit positiven Indian Ocean Dipole Ereignissen auftreten. Die stärksten Dürren des gesamten Holozäns traten in den letzten 2000 Jahren auf. Um zusätzliche Informationen aus den hervorragenden Proben zu gewinnen nutzte ich die Vorteile der laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Diese erlaubt die Detektion sub-annueller bis sub-dekadischer Elementkonzentrationsveränderungen in Stalagmiten. Mittels einer neu entwickelten Ablationszelle konnten Proben von maximal 22 cm Länge untersucht werden. Jedes analysierte Element ist ein potentieller Träger einer Klimainformation. Die Kombination der früheren Ergebnisse mit denen der LA-IPC-MS zeigt, das die Elementkonzentrationen nicht nur von Niederschlagsveränderungen und assoziiertem Auswaschen aus dem Boden abhängen. Zusätzlich können auch die biologische Aktivität und hydrogeochemische Bedingungen in der vadosen Zone Einfluss auf die Elementzusammensetzung im Tropfwasser und in den Stalagmiten haben. Darum entwickelte ich ein theoretisches Modell für meinen Standort, um zu klären, wie Klimasignale von der Atmosphäre in die Höhle transportiert werden können. Ein anschliessend rekonstruierter 1500 Jahre langer Proxyrecord zeigt Niederschlagsvariabilität an. Zudem besteht die Möglichkeit, das Vulkaneruptionen, welche grosse Mengen an Schwefelsäure produzieren, eine Bodenversauerung verursachen und damit die Elementmobilisierung verstärken können.

Page generated in 0.0538 seconds