• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 158
  • 108
  • 27
  • 25
  • 22
  • 13
  • 12
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 819
  • 109
  • 105
  • 93
  • 67
  • 66
  • 66
  • 58
  • 55
  • 55
  • 53
  • 48
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

NMR studies on the dynamics of small molecules in zeolite ZSM-5

Fergie-Woods, J. W. January 1985 (has links)
No description available.
12

The influence of drugs on polymeric biomaterials

Smith, Juliet Clare January 1995 (has links)
No description available.
13

Preparation of Copolymers of Acrylic Acid and Acrylamide for Copper (II) Capture from Aqueous Solutions

Zhang, Yudong 01 October 2009 (has links)
Cross-linked copolymers of acrylic acid (sodium acrylate) and acrylamide were synthesized by free radical polymerization. The copolymer hydrogel was studied for capture of copper ion from aqueous solution. Effects of macromolecular structure (i.e., content of the acrylic acid, the quantity of the carboxyl groups neutralized with sodium hydroxide, and the degree of cross-linking) on water-sorption and copper ion uptake were investigated. With an increase in the content of acrylic acid (sodium acrylate), the copper sulfate uptake increases, and water sorption decreases quickly and then slowly increases when the acrylic acid content is high enough. The copper ion uptake is accompanied with a release of sodium ions from the copolymer. Increasing the percentage of the carboxyl groups neutralized by sodium hydroxide will increase the uptake of copper sulfate and water. With an increase in the content of the cross-linking agent, both copper sulfate uptake and water sorption decrease. Even though valence of copper ion is two times that of sodium ion, the copper ions sorption and sodium ions release do not follow a simple ion exchange relation because of insertion of acrylamide co-monomers in macromolecular chain. When copper ions interact with carboxyl groups in the copolymer to form chelating complexes, the water sorption decreases substantially. An analysis of adsorption isotherm indicates that at relatively low concentrations of CuSO4 in water, the copper ion sorption into the copolymer follows the Langmuir model. The wide angle X-ray diffraction (WAXD) data reveal that the copper sulfate sorbed in the hydrogel is not in crystalline state.
14

Preparation of Copolymers of Acrylic Acid and Acrylamide for Copper (II) Capture from Aqueous Solutions

Zhang, Yudong 01 October 2009 (has links)
Cross-linked copolymers of acrylic acid (sodium acrylate) and acrylamide were synthesized by free radical polymerization. The copolymer hydrogel was studied for capture of copper ion from aqueous solution. Effects of macromolecular structure (i.e., content of the acrylic acid, the quantity of the carboxyl groups neutralized with sodium hydroxide, and the degree of cross-linking) on water-sorption and copper ion uptake were investigated. With an increase in the content of acrylic acid (sodium acrylate), the copper sulfate uptake increases, and water sorption decreases quickly and then slowly increases when the acrylic acid content is high enough. The copper ion uptake is accompanied with a release of sodium ions from the copolymer. Increasing the percentage of the carboxyl groups neutralized by sodium hydroxide will increase the uptake of copper sulfate and water. With an increase in the content of the cross-linking agent, both copper sulfate uptake and water sorption decrease. Even though valence of copper ion is two times that of sodium ion, the copper ions sorption and sodium ions release do not follow a simple ion exchange relation because of insertion of acrylamide co-monomers in macromolecular chain. When copper ions interact with carboxyl groups in the copolymer to form chelating complexes, the water sorption decreases substantially. An analysis of adsorption isotherm indicates that at relatively low concentrations of CuSO4 in water, the copper ion sorption into the copolymer follows the Langmuir model. The wide angle X-ray diffraction (WAXD) data reveal that the copper sulfate sorbed in the hydrogel is not in crystalline state.
15

Fate of estrogenic compounds in agricultural soils and development of an immunoassay for their environmental detection

Caron, Emmanuelle 24 June 2011 (has links)
Estrogens produced by livestock can be released into soils when their manure is spread onto agricultural land. This is the first study to determine the sorption of a range of estrogens in a wide range of soils at the regional scale, including the sorption of the phytoestrogen equol which had never been previously studied. Sorption increased in the order of 17β-estradiol=estriol <estrone<equol in surface soils collected from 41 agricultural fields in Alberta and was significantly positively correlated with soil organic carbon content (SOC) for all estrogens. 17β-estradiol was further investigated and its mineralization in non-amended and manure-amended soils never exceeded 30% at 90 days, which suggest that even under optimum environmental conditions for mineralization, 17β-estradiol or its metabolites estrone and/or estriol appear to have a relatively long persistence in Alberta soils. Maximum 17β-estradiol mineralization was significantly positively correlated with sorption and hence increased in soils with greater SOC such as those used in this study with a long-term history of solid beef manure applications. Two ELISAs were developed using rabbit polyclonal antibodies for future field experiments and environmental monitoring. Of these, a developed 17β-estradiol+estrone+estriol ELISA could detect estriol in water from an edge of field experiment at concentrations as low as 1 ng mL-1.
16

Moisture sorption hysteresis and the solvent properties of sorbed water

Johnston, K. A. January 1984 (has links)
No description available.
17

Fate of estrogenic compounds in agricultural soils and development of an immunoassay for their environmental detection

Caron, Emmanuelle 24 June 2011 (has links)
Estrogens produced by livestock can be released into soils when their manure is spread onto agricultural land. This is the first study to determine the sorption of a range of estrogens in a wide range of soils at the regional scale, including the sorption of the phytoestrogen equol which had never been previously studied. Sorption increased in the order of 17β-estradiol=estriol <estrone<equol in surface soils collected from 41 agricultural fields in Alberta and was significantly positively correlated with soil organic carbon content (SOC) for all estrogens. 17β-estradiol was further investigated and its mineralization in non-amended and manure-amended soils never exceeded 30% at 90 days, which suggest that even under optimum environmental conditions for mineralization, 17β-estradiol or its metabolites estrone and/or estriol appear to have a relatively long persistence in Alberta soils. Maximum 17β-estradiol mineralization was significantly positively correlated with sorption and hence increased in soils with greater SOC such as those used in this study with a long-term history of solid beef manure applications. Two ELISAs were developed using rabbit polyclonal antibodies for future field experiments and environmental monitoring. Of these, a developed 17β-estradiol+estrone+estriol ELISA could detect estriol in water from an edge of field experiment at concentrations as low as 1 ng mL-1.
18

Untersuchung der Sorption und Verlagerung von Terbuthylazin an verschiedenen Böden /

Lahm, Brigitte. January 1996 (has links)
Universiẗat, Diss., 1996--Hohenheim.
19

Theoretical and experimental investigations of an adsorption heat pump with heat transfer between two adsorbers

Schawe, Dirk. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
20

Sorption and transport of heterocyclic aromatic compounds in soils /

Bi, Erping. January 2006 (has links)
Zugl.: Tübingen, University, Diss., 2006.

Page generated in 0.0875 seconds