• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Event Ecology: An Analysis of Discourses Surrounding the Disappearance of the Kah Shakes Cove Herring (Clupea pallasi)

Hebert, Jamie Sue 01 January 2011 (has links)
The conflict over the herring run at Kah Shakes is complicated. In 1991, the Alaska Department of Fish and Game (ADFG) expanded the commercial herring sac roe fishing boundary in the Revillagigedo Channel to include Cat and Dog Islands. Native and non-Native local residents of Ketchikan protested the boundary expansion, as did managers of the neighboring Annette Island Fishery managed by the local reservation. Using cultural anthropological research methods that include ethnographic data, semi-structured, qualitative interviews gathered in southeast Alaska in 2008, and a comprehensive literature review of historic data culled from newspapers and other texts, I examine the many political factors that contribute to this conflict, including the contest between anecdotal and scientific data, the construction of fisheries management boundaries, and issues of collective memory. Using Vayda and Walters' event ecology methodology, bolstered by discourse analysis, I identify three discourses (local ecological knowledge, management and environmental). I use these discourses as comparative units to show that little coincident data can be identified between these discourses. I examine two areas of dissident data, stock definition and measures of abundance, and recommend that local ecological knowledge (LEK) be used to expand the scientific database on which current management techniques depend, to question the accuracy of current ADFG management boundaries and stock identification, and to recalibrate guideline harvest levels by exposing the effects of shifting baselines. I then outline how Geographic Information Systems (GIS) may assist in the validation and integration of LEK into the current fisheries management paradigm to create a more holistic narrative of ecological change.
2

Mineralization and Alteration of the Late Triassic Glacier Creek Cu-Zn VMS Deposit, Palmer Project, Alexander Terrane, Southeast Alaska

Steeves, Nathan 14 January 2013 (has links)
The Glacier Creek volcanogenic massive sulfide (VMS) deposit is hosted within Late Triassic, oceanic back-arc or intra-arc, rift-related, bimodal volcanic rocks (Hyd or Tats Group) of the allochthonous Alexander terrane known as the Alexander Triassic Metallogenic Belt (ATMB). The deposit presently consists of four tabular massive sulfide lenses with a resource of 4.75 Mt. at 1.84% Cu, 4.57% Zn, 0.15% Pb, 0.28 g/t Au and 29.07 g/t Ag. A deposit-scale thrust fault offsets stratigraphy along the axial surface of a deposit-scale anticline. The massive sulfide lenses are barite-rich and are divided into 6 main ore-types based on mineral assemblages. There is a large range of sphalerite compositions, with low-Fe sphalerite dominant throughout the lenses and high-Fe sphalerite at the top and bottom of the lenses in pyrrhotite-rich zones. Lenses contain anomalous Sb, Hg and Tl. Gangue minerals include barite, quartz, barian-muscovite, calcite, albite, highly subordinate chlorite and locally hyalophane and celsian. Overlying massive sulfide is a tuffaceous hydrothermal sediment with anomalous REE patterns and local hyalophane. The general footwall to all four lenses is a thick unit of coherent to volcaniclastic feldspar-phyric basalt containing extensive lateral alteration. Four alteration facies are recognized based on mineral assemblages. Mass balance calculations for the footwall indicate general gains of S, Fe, Si and K with coincident loss of Ca, Na and Mg, along with trace element gains of Tl, Sb, Hg, Ba, Zn, Cu, As and loss of Sr with increased alteration intensity. Short wavelength infrared (SWIR) spectroscopy shows a general decrease in Na, K and Al content of muscovite and increase of Fe+Mg and Ba content towards ore. Integrated petrographic, mineral, chemical and sulfur-isotope data suggest a transition during deposit formation, from high-temperature, acidic, reduced hydrothermal fluids mixing with oxidized, SO4-rich seawater, to later cooler, low fO2-fS2 conditions of formation and a lack of SO4 in seawater.
3

Mineralization and Alteration of the Late Triassic Glacier Creek Cu-Zn VMS Deposit, Palmer Project, Alexander Terrane, Southeast Alaska

Steeves, Nathan 14 January 2013 (has links)
The Glacier Creek volcanogenic massive sulfide (VMS) deposit is hosted within Late Triassic, oceanic back-arc or intra-arc, rift-related, bimodal volcanic rocks (Hyd or Tats Group) of the allochthonous Alexander terrane known as the Alexander Triassic Metallogenic Belt (ATMB). The deposit presently consists of four tabular massive sulfide lenses with a resource of 4.75 Mt. at 1.84% Cu, 4.57% Zn, 0.15% Pb, 0.28 g/t Au and 29.07 g/t Ag. A deposit-scale thrust fault offsets stratigraphy along the axial surface of a deposit-scale anticline. The massive sulfide lenses are barite-rich and are divided into 6 main ore-types based on mineral assemblages. There is a large range of sphalerite compositions, with low-Fe sphalerite dominant throughout the lenses and high-Fe sphalerite at the top and bottom of the lenses in pyrrhotite-rich zones. Lenses contain anomalous Sb, Hg and Tl. Gangue minerals include barite, quartz, barian-muscovite, calcite, albite, highly subordinate chlorite and locally hyalophane and celsian. Overlying massive sulfide is a tuffaceous hydrothermal sediment with anomalous REE patterns and local hyalophane. The general footwall to all four lenses is a thick unit of coherent to volcaniclastic feldspar-phyric basalt containing extensive lateral alteration. Four alteration facies are recognized based on mineral assemblages. Mass balance calculations for the footwall indicate general gains of S, Fe, Si and K with coincident loss of Ca, Na and Mg, along with trace element gains of Tl, Sb, Hg, Ba, Zn, Cu, As and loss of Sr with increased alteration intensity. Short wavelength infrared (SWIR) spectroscopy shows a general decrease in Na, K and Al content of muscovite and increase of Fe+Mg and Ba content towards ore. Integrated petrographic, mineral, chemical and sulfur-isotope data suggest a transition during deposit formation, from high-temperature, acidic, reduced hydrothermal fluids mixing with oxidized, SO4-rich seawater, to later cooler, low fO2-fS2 conditions of formation and a lack of SO4 in seawater.
4

Mineralization and Alteration of the Late Triassic Glacier Creek Cu-Zn VMS Deposit, Palmer Project, Alexander Terrane, Southeast Alaska

Steeves, Nathan January 2013 (has links)
The Glacier Creek volcanogenic massive sulfide (VMS) deposit is hosted within Late Triassic, oceanic back-arc or intra-arc, rift-related, bimodal volcanic rocks (Hyd or Tats Group) of the allochthonous Alexander terrane known as the Alexander Triassic Metallogenic Belt (ATMB). The deposit presently consists of four tabular massive sulfide lenses with a resource of 4.75 Mt. at 1.84% Cu, 4.57% Zn, 0.15% Pb, 0.28 g/t Au and 29.07 g/t Ag. A deposit-scale thrust fault offsets stratigraphy along the axial surface of a deposit-scale anticline. The massive sulfide lenses are barite-rich and are divided into 6 main ore-types based on mineral assemblages. There is a large range of sphalerite compositions, with low-Fe sphalerite dominant throughout the lenses and high-Fe sphalerite at the top and bottom of the lenses in pyrrhotite-rich zones. Lenses contain anomalous Sb, Hg and Tl. Gangue minerals include barite, quartz, barian-muscovite, calcite, albite, highly subordinate chlorite and locally hyalophane and celsian. Overlying massive sulfide is a tuffaceous hydrothermal sediment with anomalous REE patterns and local hyalophane. The general footwall to all four lenses is a thick unit of coherent to volcaniclastic feldspar-phyric basalt containing extensive lateral alteration. Four alteration facies are recognized based on mineral assemblages. Mass balance calculations for the footwall indicate general gains of S, Fe, Si and K with coincident loss of Ca, Na and Mg, along with trace element gains of Tl, Sb, Hg, Ba, Zn, Cu, As and loss of Sr with increased alteration intensity. Short wavelength infrared (SWIR) spectroscopy shows a general decrease in Na, K and Al content of muscovite and increase of Fe+Mg and Ba content towards ore. Integrated petrographic, mineral, chemical and sulfur-isotope data suggest a transition during deposit formation, from high-temperature, acidic, reduced hydrothermal fluids mixing with oxidized, SO4-rich seawater, to later cooler, low fO2-fS2 conditions of formation and a lack of SO4 in seawater.
5

Aspects of the foraging ecology of humpback whales (Megaptera novaeangliae) in Frederick Sound and Stephens Passage, Southeast Alaska

Szabo, Andrew, 1974- 09 May 2011 (has links)
The North Pacific humpback whale (Megaptera novaeangliae) population has been increasing at an average annual rate of ~6% since the early 1990s. In northern Southeast Alaska alone, there are now more whales than estimated for the entire North Pacific several decades ago. An understanding of how this growing population is repopulating traditional foraging grounds will benefit from detailed investigations of their prey preferences and trends in whale abundance and distribution relative to those prey. This dissertation examines these issues from late May until early September 2008 in Frederick Sound and Stephens Passage, a Southeast Alaskan feeding area historically used by humpback whales. The foundation for the study is an analysis of the life histories and abundance patterns of euphausiids, the principal prey of humpbacks in the area, during late spring and summer. Four species, Thysanoessa raschii, T. longipes, T. spinifera, and Euphausia pacifica, were identified in plankton net samples collected at random locations throughout the study site (n = 49) and in locations where a strong scattering layer was observed on a 120 kHz echosounder (n = 48). Both sample types varied in euphausiid species composition. Abundance patterns of immature euphausiids coupled with observations of females carrying spermatophores indicated differences between species in spawning schedules. Thysanoessa spp. began spawning in early April with the spring phytoplankton bloom and continued until late June, whereas E. pacifica began spawning in early June and continued until late August. This protracted recruitment of immature euphausiids was geographically widespread throughout the summer in contrast to adults, which, although present all summer, were found primarily in slope and shallow (< 100 m) areas. To determine if humpback whales preferred one euphausiid species or life-stage over another, net sample and hydroacoustic data collected in the vicinity of whales were compared to similar data collected in random locations throughout the study site. This revealed that whales targeted dense aggregations of adult euphausiids, but did not discriminate between the various species, which was surprising because of presumed differences in the energy density linked to their different spawning schedules. Additionally, whales did not spend time in areas with concentrations of immature euphausiids, which were likely not large enough during the study period to be suitable prey. With this preference for adult euphausiids, the abundance and distribution patterns of humpbacks were examined in relation to prey availability. Whale abundance was lowest at the beginning of the study in late May at ca. 68 whales and peaked in late July at ca. 228 animals – approximately 12% of the region’s estimated abundance for the study year. This study did not detect a concomitant increase in the availability of adult euphausiids, which is unsurprising since immature euphausiids would not recruit into the adult population until after the end of the study, and post-spawning mortality and predation pressure is presumably high during this time. Instead, whales clustered increasingly around comparatively fewer prey as the summer progressed. These observations, combined with a plateau in whale abundance after July, suggest that their abundance in the area was limited by euphausiid availability. Estimates of whales using the study site during the summer have remained similar over several decades despite a dramatic increase in humpback numbers in Southeast Alaska and elsewhere in the North Pacific. The results from this study suggest that, although the study site remains important seasonally to some whales, it is not a significant source of prey responsible for regional population growth in general. More likely, it is part of a network of feeding areas that has influenced the population trend. Further insight into these and the other issues raised in this dissertation could come from several additional analyses. An extended sampling season that captures the recruitment of immature euphausiids into the adult population would reveal whether a given year's prey cohort represents an important resource to whales in that same year, which has potential implications for interpreting mid-late season whale abundance patterns. As well, a photo-identification study would be useful in characterizing whale residency patterns and determining whether the abundance trends reflect a relatively small subset of the regional population using the area for most of the season or a continuous flow of a larger portion of the population. Finally, similar analyses as those outlined here but conducted in other areas within the region would provide additional insight into the network’s capacity to support the recovering whale population. / Graduation date: 2012
6

Foraging ecology, diving behavior, and migration patterns of harbor seals (Phoca vitulina richardii) from a glacial fjord in Alaska in relation to prey availability and oceanographic features

Womble, Jamie Neil 12 March 2012 (has links)
Understanding the movement behavior and foraging strategies of individuals across multiple spatial and temporal scales is essential not only for understanding the biological requirements of individuals but also for linking individual strategies to population level effects. Glacial fjords scattered throughout south-central and southeastern Alaska host some of the largest seasonal aggregations of harbor seals (Phoca vitulina richardii) in the world, and an estimated 15% of the harbor seal population in Alaska is found seasonally at these glacial ice sites. Over the last two decades, the number of harbor seals has declined at two of the primary glacial fjords, in Aialik Bay in south-central Alaska and in Glacier Bay in southeastern Alaska, thus raising concerns regarding the viability of seal populations in glacial fjord environments. From 2004-2009, the foraging ecology, diving behavior, and migration patterns of harbor seals from Glacier Bay National Park, Alaska were examined in relation to prey availability and oceanographic features in Glacier Bay and the surrounding regions of southeastern Alaska. Time-depth recorders, very high frequency transmitters, and satellite-linked transmitters were used to quantify the vertical and horizontal movement patterns of harbor seals in the marine environment. Specifically, (1) I characterized the diving behavior, foraging areas, and foraging strategies of female harbor seals from terrestrial and glacial ice sites relative to prey availability during the breeding season (May-June) in Glacier Bay, (2) I quantified the intra-population variation in at-sea post-breeding season (September-April) distribution and movement patterns of female harbor seals in relation to oceanographic features, (3) I quantified the post-breeding season migration patterns of female harbor seals relative to the boundaries of the marine protected area of Glacier Bay National Park, and (4) I characterized the use of the continental shelf region of the eastern Gulf of Alaska by female harbor seals from Glacier Bay, both as a foraging area and as a migratory corridor in relation to oceanographic features. During the breeding season, there was a substantial degree of intra-population variation in the diving behavior and foraging areas of juvenile and adult female seals from glacial ice and terrestrial sites in Glacier Bay. The presence of multiple diving strategies suggests that differences in the relative density and depth of prey fields in glacial ice and terrestrial habitats in addition to seal age and reproductive status may influence diving and foraging behavior of harbor seals. During the post-breeding season, juvenile and adult female harbor seals ranged extensively beyond the boundaries of the marine protected area of Glacier Bay National Park, throughout the northern inshore waters of southeastern Alaska and the continental shelf region of the eastern Gulf of Alaska between Cross Sound and Prince William Sound, Alaska (up to 900 kilometers away). Seals exhibited a relatively high degree of intra-population variation in their at-sea post-breeding season distribution patterns that may be a function of extrinsic factors such as oceanographic characteristics, which can influence prey availability as well as intrinsic factors including previous experience with foraging areas and seal condition and age. Use of the continental shelf region of the eastern Gulf of Alaska by harbor seals as a foraging area may be due to enhanced biological productivity which may be associated with ephemeral hydrographic and/or static bathymetric features. Despite extensive migrations of seals from Glacier Bay during the post-breeding season, there was a high degree of inter-annual site fidelity of seals to Glacier Bay the following breeding season after seals were captured. / Graduation date: 2012

Page generated in 0.0621 seconds