• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conservation Management of Two Threatened Frog Species in South-Eastern New South Wales, Australia

Hunter, David, n/a January 2007 (has links)
The decline and extinction of amphibian species over the past three decades is widely acknowledged as one of the greatest biodiversity crises of modem time. Providing convincing data to support hypotheses about these declines has proved difficult, which has greatly restricted the development and implementation of management actions that may prevent further amphibian declines and extinctions from occurring. In this thesis, I present research that was undertaken as part of the recovery programs for the southern corroboree frog (Pseudophryne corroboree), and the Booroolong frog (Litoria booroolongensis); two species that underwent very rapid declines in distribution and abundance during the 1980's. More specifically, I investigated potential causal factors in the declines of both species using experimental and correlative studies, and examined the mechanisms by which one threatening process (chytridiomycosis) may be causing continued decline and extinction in P. corroboree. I also examined the implications of population dynamics for monitoring L. booroolongensis, and suggest a possible monitoring strategy that may reliably facilitate the implementation of recovery objectives for this species. I also tested one possible reintroduction technique aimed at preventing the continued decline and extinction of P. corroboree populations. In Chapters 2 and 3, I present the results from a series of experiments in artificial enclosures designed to examine whether the tadpoles of L. booroolongensis are susceptible to predation by co-occurring introduced predatory fish species; brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), European carp (Cyprinus carpio), redfin perch (Percafluviatilis), and mosquito fish (Gambusia holbrooki). I demonstrated that the tadpoles of L. booroolongensis, and a closely related species Litoria lesueuri, were palatable to non-native trout species, but not to two native predatory fish species, Gadopsis bispinosus and Galaxias olidus. A pond breeding frog species included in this experiment, Limnodynastes tasmaniensis, was palatable to both the native and non-native fish species. In a separate experiment I also demonstrated that the tadpole of L. booroolongensis is palatable to the three other introduced fish species examined in this study; C. carpio, P. fluviatilis, and G. holbrooki. In three of the experiments, the provision of rock within enclosures as a potential refuge habitat did not afford protection to L. booroolongensis tadpoles from predation by any of the five introduced fish species examined. While all the introduced fish species tested here did consume L. booroolongensis tadpoles, the results also suggested that chemical unpalatability might afford some level of protection against some of these fish species. Firstly, the addition of alternative prey items in one of the experiments reduced the proportion of tadpoles consumed, suggesting that L. booroolongensis may not be a preferred prey item. Secondly, the proportion of tadpoles consumed varied greatly among the different fish species examined, suggesting differing levels of palatability. Overall, this study supports previous research in suggesting that chemical unpalatability may be an important strategy for the tadpoles of riverine frog species in south-eastern Australia to avoid predation by native fish species, and that this strategy is less effective against introduced fish species. While L. booroolongensis currently persists in streams inhabited by a number of introduced fish species, this study supports the likelihood that these species are having a negative impact on populations of L. booroolongensis in the wild. In Chapter 4, I present the results of a study aimed at examining potential monitoring techniques for L. booroolongensis. The results of a mark-recapture exercise demonstrated that L. booroolongensis may exhibit large fluctuations in abundance from one year to the next, and through a prospective power analysis approach, I demonstrated that it would be difficult to confidently identify population trends of interest using either indices or estimates of abundance for this species. An assessment of the capacity to identify the presence or absence of L. booroolongensis using nighttime spotlight surveys demonstrated the high detectability of this species using this technique, at both the scale of 300-meter sections of stream and individual breeding areas (typically less than 10-meters of stream). This study suggests that the monitoring objectives of the L. booroolongensis recovery program would be most effectively achieved using presence/absence surveys at different scales. In Chapter 5, I present the results of a field survey aimed at determining the current distribution and habitat requirements of L. booroolongensis in the South West Slopes region of New South Wales. Of the 163 sites I surveyed across 49 streams,I located L. booroolongensis along 77 of these sites from 27 streams. Based on population and habitat connectivity, this study identified 18 populations of L. booroolongensis that are likely to be operating as independent populations. Twelve of these populations are not represented in conservation reserves, but rather occur along streams that flow through the agricultural landscape. A broad scale habitat analysis identified a positive relationship between extent of rock structures along the stream and the occurrence of L. booroolongensis, and a negative relationship between the proportion of canopy cover and this species' occurrence. At the breeding habitat scale, this study identified a positive relationship between the presence of breeding males and; number of rock crevices in the aquatic environment, extent of emergent rocks, and proportion pool. This analysis also detected a negative relationship between occupancy and water depth. These results confirm previous work suggesting the importance of rocky stream habitats to the persistence of L. booroolongensis, but also suggest how disturbance processes, such as increasing sedimentation and weed invasion, may reduce the suitability of rocky structures as breeding sites. In Chapter 6, I investigated current levels of amphibian chytrid fungus (Batrachochytrium dendrobatidis) infection in corroboree frog populations, and used retrospective screening of museum specimens to assess the possibility that this pathogen was implicated in the initial decline of the corroboree frogs. Using histology, I did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline, however using the same technique, moderate levels of infection were detected in post-decline populations of both species. Real-time PCR screening of skin swabs identified much higher overall infection rates in post-decline populations of P. corroboree (between 44% and 59%), while significantly lower rates of infection were observed in P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species. In Chapter 7, I investigated how B. dendrobatidis may be causing the continued decline of P. corroboree through the presence of an abundant reservoir host for this pathogen. I found that populations of adult C. signifera in sub-alpine bogs carry high B. dendrobatidis infection rates (86%), but appear unaffected by this infection. An experiment involving the release of P. corroboree tadpoles into 15 natural pools resulted in metamorphs from seven of these pools testing positive for B. dendrobatidis, with all these individuals dying soon after metamorphosis. These results support the possibility that B. dendrobatidis infection in P. corroboree populations is being facilitated by the presence of large numbers of infected C. signifera in the shared environment. Chapter 8 presents the results of a population augmentation study for P. corroboree. I investigated the extent to which increasing recruitment to metamorphosis may result in population recovery in this species. This was undertaken by harvesting eggs from the field and rearing them through to mid stage tadpoles over the winter period prior to being released back to their natal ponds in spring. While I was able to increase recruitment to metamorphosis by an average of 20 percent, this did not result in a noticeable influence on the subsequent adult population size, as both manipulated and non-manipulated sites declined over the course of this study by an average of 80 percent. I observed a positive relationship between natural recruitment to a late tadpole stage and subsequent adult male population size, however there was considerable variation associated with this relationship. The relationship between recruitment and subsequent population size at the augmentation sites was consistent with the relationship observed at the non-manipulated sites. These results suggest that recruitment to metamorphosis may not be the most important life stage restricting the population recovery of P. corroboree, but that mortality during post-metamorphic stages may be more important in regulating current population size. Hence, further attempts to use captive rearing to increase P. corroboree populations in the wild should focus on the release of post-metamorphic frogs. Overall, this thesis demonstrates the value of quantitative research to the implementation and progress of threatened species recovery programs. While this research will specifically contribute to the recovery programs for L. booroolongensis and P. corroboree, it more broadly contributes to the understanding and capacity to respond to the concerning levels of amphibian extinctions currently occurring throughout the world.
2

The conservation and demography of the Southern Corroboree Frog (Pseudophryne corroboree)

Hunter, David, n/a January 2000 (has links)
The documented decline of amphibian populations over the past two decades has increased attention towards amphibian conservation. Much of this attention has been focused on testing hypotheses as to the causal factors of these declines, however providing convincing data to support any of these hypotheses has proved difficult. The testing of these hypotheses and the implementation of endangered species recovery programs has been restricted by a lack of knowledge of the ecology and population demography of amphibian species that have suffered dramatic declines. This thesis presents aspects of the research phase of the recovery program for the Southern Corroboree Frog, Pseudophryne corroboree, a species that declined to very low numbers during the early 1980's. In particular, this research aimed to determine the distribution, abundance, population dynamics and demography of this rare species. A complete reassessment of the conservation status of P. corroboree was undertaken and the nature of the persistence of this species across the landscape was analysed. Temporal trends in abundance and its relationship with population size were also investigated. Early life-history survivorship and recruitment to metamorphosis were studied at the scale of individual nest sites and populations, and the adult male population age structure and annual mortality were investigated using skeletochronology. The shout/response survey technique was used to survey and monitor the number of breeding male P. corroboree during this study. This method was found to provide consistent results when the surveys were conducted over a short (two week) period during the peak breeding season in January. Neither time of day, nor the number of males present at a pool, was found to influence the level of responsiveness of male P. corroboree to the shout/response technique. Variation in the number of responding males to the shout/response technique through the breeding season, assessed at a single site over two seasons, was unimodal with the peak responding period occurring during the last two weeks of January during both the 1998 and the 1999 breeding seasons. A systematic survey covering 213 sites across the entire historic distribution of P. corroboree found this species to be persisting at 79 sites. The majority of these sites were in the northwestern portion of the species former range, around the Jagungal Wilderness area, while no extant sites were found in the south-eastern portion of the species former range in the Smiggin Holes and Perisher Blue ski resorts area. The overall abundance of males at persistent sites was extremely low, with 92 percent of sites having fewer than ten responding males. Only one site was found to support greater than fifty responding males. A logistic regression analysis found the persistence of P. corroboree to be associated with increased number of pools within a site, decreased distance to nearest extant population and geographic position (latitude and longitude) in the landscape. While annual variation was observed in the number of breeding males for individual sites, there was no overall trend for an increase or decrease in the number of males, regardless of population size. The average annual extinction rate for local populations was five percent during this study, with those populations becoming extinct having very few breeding males (between one and three) during the previous season. Embryonic and tadpole survivorship was monitored for individual nests at three sites across three years. Recruitment to metamorphosis for P. corroboree was characterised by high variation in survivorship between nest sites, populations and years, while overall recruitment for nest sites was skewed towards lower survivorship. Average nest survivorship to metamorphosis across all sites and years was ten percent but the skewed nature of this survivorship meant that the majority of nest sites attained very low or no survivorship. The low proportion of nest sites that did attain high survivorship provided the greatest contribution to overall recruitment. The levels of embryonic and tadpole mortality observed in this study would be providing a considerable contribution to the regulation of current population sizes. The greatest level of early life-history mortality was observed during the late autumn/winter egg and tadpole stage, with high survivorship during the summer and early autumn egg stage and the post-winter tadpole stage. The estimated sex ratio for seven populations, based on the number of eggs within male nest sites, indicated that for most populations, regardless of population size, there was a greater proportion of females to males. In general, the estimated sex ratio of smaller populations showed greater annual variation and had a lower average number of females to males than the single large population. Tadpole surveys conducted across remnant populations during both 1998 and 1999 found recruitment to metamorphosis to be very low for the majority of populations. A third of all populations during both years attained no recruitment to metamorphosis, with those populations that did attain recruitment typically having fewer than 20 tadpoles. While sites with more frogs generally recruited more tadpoles, there was no strong relationship between population size and the number of tadpoles recruited per male at the scale of either pool or site. There was also no significant difference in recruitment levels between the two years. Tadpole surveys across breeding pools within the single large population also found very low tadpole abundance. There was no strong relationship between the number of male frogs at a pool and the number of tadpoles per male and there was no significant difference in tadpole abundance between the two years. Based on the low density of males at pools and sites (typically less than five), and the skewed nature of nest survivorship identified from monitoring individual nest sites, it seems likely that both deterministic and stochastic factors are influencing recruitment levels in remnant populations of P. corroboree. This study determined that adult male P. corroboree could be accurately aged using the technique of skeletochronology, and this technique was used to determine the adult male population age structure for three populations. The results indicated that adult male P. corroboree can reach sexual maturity from metamorphosis in three years, but the majority of individuals take four years. The oldest individual identified in this study was nine years old from metamorphosis. The adult male age structure at the single large site showed very little annual variation, whereas the two smaller populations showed highly pulsed age structures from one year to the next. The size of adult males was found to be a poor predictor of age. Annual adult male survivorship, calculated by following cohorts from one year to the next, was 55 percent. Based on this calculation of annual adult male survivorship, it seems likely that the initial decline in P. corroboree involved increased levels of adult mortality. The results of this study indicate that the persistence of. corroboree in the wild is precarious in the short-term. For this reason, it is recommended that efforts be undertaken to secure this species ex situ. Attempts to increase population numbers in the wild would greatly benefit from determining the factor(s) that have caused the decline in this species, however, failure to do so should not preclude field experimental management aimed at developing technique to increase the size of remnant populations. This is because it is likely that small population stochasticity is contributing to the current regulation of population size and it is possible that the factors that caused the decline in this species cannot be removed from the environment.

Page generated in 0.0868 seconds