Spelling suggestions: "subject:"southwest plot"" "subject:"southwesterly plot""
1 |
Effect of the Initial Out-of-Straightness on the Lateral Torsional Buckling Strength of Steel BeamsLi, Ming January 2018 (has links)
The effect of initial out-of-straightness of steel beams with wide flange cross-sections on their elastic lateral torsional buckling strength is investigated analytically and numerically. A variational principle is first developed and then used to obtain the governing equilibrium conditions and associated boundary conditions for a beam with general patterns of initial out-of-straightness and initial angles of twist. The principle is then used to develop a finite element formulation to characterize the lateral torsional response of beams with initial out-of-straightness under general transverse loading. The validity of the finite element formulation is verified through comparison against results from models based thin-walled beam finite element and shell element models available in ABAQUS. Since the load lateral displacement responses do not exhibit a distinct point of loss of stability, two design criteria are proposed for the characterization of the failure. The first criterion is based on a threshold value for additional lateral displacement and the second criterial is based on a threshold value for the normal stresses. Both criteria are applied in conjunction with the analytical solution and finite element formulation in order to determine a moment resistance based on lateral torsional buckling that incorporates the effect of initial out-of-straightness. The moment capacity based on the displacement-based criterion is shown to solely depend on the ratio between the initial out-of-straightness component associated with the first buckling mode and the additional displacement threshold value specified. To the contrary, moment capacity based on the stress criterion, was found to depend upon the initial out-of-straightness magnitude, the normal stress threshold value and the geometry of the cross-section.
The effects of the above parameters on the predicted moment capacity were investigated for beams with common sections in a systematic parametric study. Possible means of modifying the present provisions of CAN-CSA S16 relating to elastic lateral torsional buckling to incorporate the effect of initial out-of-straightness effects are discussed and illustrated through examples.
The load-deformation plots for beams with initial out-of-straightens as predicted by the formulations developed in the present study are then used to extend the Southwell plot technique, originally developed for buckling of column with initial out-of-straightness, to the lateral torsional buckling of beams with initial out-of-straightness. The study shows that the plot, either experimentally or analytically obtained, of the applied load versus lateral displacement, at any point or angle of twist at any section, for a beam with initial out-of-straightness case can predict (a) the elastic critical moment of an analogous initially straight beam, and (b) the first buckling mode contribution to the initial out-of-straightness.
|
2 |
Stabilitní problémy prutů z vrstveného konstrukčního skla / Stability problems of laminated structural glass membersPešek, Ondřej January 2018 (has links)
Transparent and subtle structures are features of modern architecture. Structural glass is constructional material that provides to realize architect's visions and ideas. Glass as a constructional material is more often used as a material for primary load-bearing structures. Realization of safe, reliable and economic glass structure is real challenge for structural engineers because of absence of standards for designing of glass members and elements. Compressed members (columns), bended members (beams) and members loaded by compression and bending (beam-columns) were analysed in the frame of the doctoral thesis whereby the emphasis is being placed on the lack of stability – flexural buckling, lateral-torsional buckling and flexural-lateral-torsional buckling. Measuring of shape and amplitude of initial geometrical imperfections is a part of doctoral thesis. The theoretical analysis describes the behaviour of the member by means of solving the differential equations. The solution according to the second order theory developed for metal members is applied on structural laminated glass members with use of effective cross-sectional characteristics. Numerical analysis is focused on the use of commonly available software based on finite element method in order to predict the load-bearing resistance of laminated glass members. Actual behaviour of laminated and monolithic structural glass members was found within experimental program. The correctness of FEM model and analytical solutions were evaluated by comparing with test results. The goal of the doctoral thesis was determine of buckling curves for calculation of flexural buckling and lateral-torsional buckling resistances by the same calculation procedure as for metal members. Because of small number of experimentally tested specimens the Monte Carlo simulation was performed.
|
3 |
Axial Compression Behavior of Unidirectional Carbon/Epoxy Tubes and Rods Before and After ImpactOxborrow, Ian Michael 01 December 2014 (has links) (PDF)
Compression tests were performed on damaged and undamaged rods and tubes made from unidirectional carbon/epoxy composite and lightweight core materials. Tested samples represent local members in an open, three-dimensional, composite lattice structure. Testing was performed in order to establish effective core materials to use in order to increase the buckling length of local IsoTruss® members while maintaining low weight. Members were formed from T700SC-12K-50C carbon fiber with UF6639-100 resin. Core materials consisted of 3/8-inch (0.953 cm) outside diameter Teflon® rods, Teflon® tubes, nylon rods, nylon tubes, Ertalyte® rods, and Duratron® rods. All 3/8-inch (0.953-cm) cores were each surrounded by 50 tows of carbon/epoxy prepreg. Control samples were also created with 50 carbon/epoxy prepreg tows. Half-inch (1.27 cm) outside diameter copper tubes were used as core materials for tubes consisting of 100 carbon/epoxy prepreg tows. Control samples to compare against samples with copper cores were also created with 100 tows of carbon/epoxy prepreg. Impact damage was inflicted using a cylindrical tup with 20 ft-lb impact energy.In undamaged specimens, nylon tube showed the highest structural efficiency. Nylon showed structural efficiencies much higher than other materials when comparing undamaged samples. In damaged specimens Ertalyte® rods showed the highest structural efficiency. Core stiffness appeared to control the level of absorbed impact energy with stiffer cores absorbing and dissipating more energy than softer equivalents during impact.
|
Page generated in 0.075 seconds