• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Communication Rates in the Proximity of Near-Earth Asteroids

Nelson, Evan, Creusere, Charles D., Critz, Thomas, Butcher, Eric 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / In this paper we analyze fundamental local-area communication issues related to proximity operations around near-earth asteroids. We are motivated by NASA's plan to send robotic spacecraft to numerous such asteroids in the coming years in preparation for an eventual manned mission. We consider here the case where multiple probes are deposited on the surface of an asteroid and must communicate the data they collect to each other and to earth by using the orbiting `mothership' as a relay. With respect to this scenario, we statistically analyze the ability of surface probes in various locations to communicate with the mothership as well as their abilities to network with one another. For the purposes of this analysis, we assume the simplest possible communications scenario: a surface probe can communicate with the mothership only when it has an unobstructed line of sight. At the frequencies of interest here, line of sight is a necessary condition but it is obviously not sufficient - the end-to-end link margins of our communications system must be high enough to support the desired/required data rates. The work presented in this paper extends our previous research in which we only analyzed the visibility of the locations on the surface of the asteroid. Here, we consider how visibility affects the required communications bandwidth and buffer sizes for both surface-to-spacecraft and surface-to-surface scenarios.
2

Analysis of Communication Interconnectedness in the Proximity of Near-Earth Asteroids

Creusere, Charles D., Nelson, Evan, Critz, Thomas, Buther, Eric 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / In this paper we analyze fundamental local-area communication issues related to proximity operations around near-earth asteroids. We are motivated by NASA's plan to send robotic spacecraft to numerous such asteroids in the coming years in preparation for an eventual manned mission. We consider here the case where multiple probes are deposited on the surface of an asteroid and must communicate the data they collect to each other and to earth by using the orbiting `mothership' as a relay. With respect to this scenario, we statistically analyze the ability of surface probes in various locations to communicate with the mothership as well as their abilities to network with one another. For the purposes of this analysis, we assume the simplest possible communications scenario: a surface probe can communicate with the mothership only when it has an unobstructed line of sight. At the frequencies of interest here, line of sight is a necessary condition but it is obviously not sufficient - the end-to-end link margins of our communications system must be high enough to support the desired/required data rates. Nonetheless, this simplistic analysis represents the first step in characterizing the communication system requirement for the asteroid-local portion of the system.
3

WiFu Transport: A User-level Protocol Framework

Buck, Randall Jay 06 April 2012 (has links) (PDF)
It is well known that the transport layer protocol TCP has low throughput and is unfair in wireless mesh networks. Transport layer solutions for mesh networks have been primarily validated using simulations with simplified assumptions about the wireless network. The WiFu Transport framework complements simulator results by allowing developers to easily create and experiment with transport layer protocols on live networks. We provide a user-space solution that is flexible and promotes code reuse while maintaining high performance and scalability. To validate WiFu Transport we use it to build WiFu TCP, a decomposed Tahoe solution that preserves TCP semantics. Furthermore, we share other WiFu developers' experiences building several TCP variants as well as a hybrid protocol to demonstrate flexibility and code reuse. We demonstrate that WiFu Transport performs as well as the Linux kernel on 10 and 100 Mbps Ethernet connections and over a one-hop wireless connection. We also show that our WiFu TCP implementation is fair and that the framework also scales to support multiple threads.

Page generated in 0.0937 seconds