Spelling suggestions: "subject:"space's"" "subject:"surfaceof""
1 |
The space B(pi) and its dualYang, Po-chin 16 June 2005 (has links)
The space B(pi), defined by s.n. function (Phi)(pi)(x_{1},...), were discussed in details in [8], and it is shown that B(pi) is the dual space of B(Pi)^0, which is the closure of the polynomials in B(Pi), the space of analytic function defined by the s.n. function (Phi)(Pi)(x_{1},...), provided that {pi_{n}} satisfies some regularity condition. In this article, we will show that in fact we have the relation (B(Pi)^0)^* approx B(pi), B(pi)^* approx B(Pi). This is an interesting analogy to the classical duality between the operator ideal (S(Pi))^(0), S(pi) and S(Pi), or, the s.n. ideal defined by (Phi)(Pi) and (Phi)(pi).
|
Page generated in 0.0236 seconds