1 |
Detection of stress during the drying process of polymer dispersionsEhe, Kerstin Anna von der January 2008 (has links)
Zugl.: Clausthal, Techn. Univ., Diss., 2008
|
2 |
FEM-Berechnungen von Spannungen und Spannungsintensitätsfaktoren in und an Einschlüssen /Wölkerling, Sven. January 2007 (has links)
Zugl.: Bremen, Universiẗat, Diss., 2007.
|
3 |
Verformungs- und Versagensverhalten ausgewählter niedrig legierter Stähle unter Variation von Temperatur, Verformungsgeschwindigkeit und SpannungszustandAbdel-Malek, Shawky 16 May 2006 (has links) (PDF)
Die Festigkeits- und Zähigkeitseigenschaften von Stählen sind gefügeabhängige Größen. Die Einflüsse von Temperatur und Verformungsgeschwindigkeit auf die Werkstoffwiderstandsgrößen sind von grundlegender Bedeutung für das Verständnis und die Charakterisierung des Werkstoffverhaltens.
Die Beschreibung des Werkstoffverhaltens durch geeignete konstitutive Modelle ist eine wesentliche Grundlage für die Simulation der in der Praxis auftretenden Verformungs- und Versagensvorgänge. Die Simulation hochgeschwindigkeits-belasteter Bauteile, wie sie in den ballistischen und Crash-Vorgängen sowie bei Hochgeschwindigkeitsumformprozessen erfolgt, erfordert die Kenntnis von dynamischen Werkstoffkennwerten sowie des Werkstoffverhaltens unter Berücksichtigung der Belastungsbedingungen. Die Ermittlung der relevanten Werkstoffeigenschaften für die niedrig legierten Stähle 28NiCrMoV10, 30CrMoV9, 30NiCrMo16-6 und 15NiCrMo10-6 steht im Vordergrund dieser Arbeit. Für die Ermittlung der Werkstoffkenndaten werden spezielle Prüfaufbauten sowie moderne, teilweise selbstentwickelte Messtechniken verwendet.
Es ist gezeigt worden, dass die Anwendung des Konzeptes der thermischen Aktivierung durch das MTS-Modell auch bei hohen Verformungen und extremen Dehngeschwindigkeiten für die niedrig legierten Stähle zu sehr guten Ergebnissen führt. Bei niedrigen Geschwindigkeiten bzw. hohen Temperaturen kann durch Einfügen eines zusätzlichen Spannungsanteils der Effekt der dynamischen Reckalterung berücksichtigt und damit der Gültigkeitsbereich des MTS-Modells erweitert werden. Als dritte Neuheit wird eine Beziehung für die Abhängigkeit der thermisch aktivierten Spannung von der Menge der Legierungselemente erstellt.
Mit FE-Rechnungen wurde der Grad der Spannungsmehrachsigkeit bei der Einschnürung und der Rissinitiierung bestimmt. Es wurde gezeigt, dass das Verfestigungsverhalten den Verlauf der Spannungsmehrachsigkeit stark beeinflusst. Zur Beschreibung der Versagensinitiierung wurden zwei Versagensmodelle herangezogen und ihre Parameter bestimmt. Die verschiedenen Einflüsse auf das Versagensverhalten werden eingehend diskutiert.
|
4 |
Theorie und Numerik volumetrischer Schalenelemente zur Delaminationsanalyse von FaserverbundlaminatenFiolka, Mark. January 2008 (has links)
Universiẗat, Diss., 2007--Kassel.
|
5 |
Nichtlineare Verformung einachsig belasteter GewebeMüllen, Andreas Josef. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
|
6 |
Verformungs- und Versagensverhalten ausgewählter niedrig legierter Stähle unter Variation von Temperatur, Verformungsgeschwindigkeit und SpannungszustandAbdel-Malek, Shawky 27 April 2006 (has links)
Die Festigkeits- und Zähigkeitseigenschaften von Stählen sind gefügeabhängige Größen. Die Einflüsse von Temperatur und Verformungsgeschwindigkeit auf die Werkstoffwiderstandsgrößen sind von grundlegender Bedeutung für das Verständnis und die Charakterisierung des Werkstoffverhaltens.
Die Beschreibung des Werkstoffverhaltens durch geeignete konstitutive Modelle ist eine wesentliche Grundlage für die Simulation der in der Praxis auftretenden Verformungs- und Versagensvorgänge. Die Simulation hochgeschwindigkeits-belasteter Bauteile, wie sie in den ballistischen und Crash-Vorgängen sowie bei Hochgeschwindigkeitsumformprozessen erfolgt, erfordert die Kenntnis von dynamischen Werkstoffkennwerten sowie des Werkstoffverhaltens unter Berücksichtigung der Belastungsbedingungen. Die Ermittlung der relevanten Werkstoffeigenschaften für die niedrig legierten Stähle 28NiCrMoV10, 30CrMoV9, 30NiCrMo16-6 und 15NiCrMo10-6 steht im Vordergrund dieser Arbeit. Für die Ermittlung der Werkstoffkenndaten werden spezielle Prüfaufbauten sowie moderne, teilweise selbstentwickelte Messtechniken verwendet.
Es ist gezeigt worden, dass die Anwendung des Konzeptes der thermischen Aktivierung durch das MTS-Modell auch bei hohen Verformungen und extremen Dehngeschwindigkeiten für die niedrig legierten Stähle zu sehr guten Ergebnissen führt. Bei niedrigen Geschwindigkeiten bzw. hohen Temperaturen kann durch Einfügen eines zusätzlichen Spannungsanteils der Effekt der dynamischen Reckalterung berücksichtigt und damit der Gültigkeitsbereich des MTS-Modells erweitert werden. Als dritte Neuheit wird eine Beziehung für die Abhängigkeit der thermisch aktivierten Spannung von der Menge der Legierungselemente erstellt.
Mit FE-Rechnungen wurde der Grad der Spannungsmehrachsigkeit bei der Einschnürung und der Rissinitiierung bestimmt. Es wurde gezeigt, dass das Verfestigungsverhalten den Verlauf der Spannungsmehrachsigkeit stark beeinflusst. Zur Beschreibung der Versagensinitiierung wurden zwei Versagensmodelle herangezogen und ihre Parameter bestimmt. Die verschiedenen Einflüsse auf das Versagensverhalten werden eingehend diskutiert.
|
7 |
Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer BeanspruchungBeyer, Frank R., Zastrau, Bernd W. 02 December 2011 (has links) (PDF)
Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. / For design and simulation of plane textile reinforced concrete structures mechanical models representing the material behaviour under biaxial loading are necessary. For one-dimensional structures several models were presented in the past. For their further development an extension for biaxial material behaviour is usually proposed. In this paper the required extensions are discussed and their feasibility for modelling is assessed.
|
8 |
Hauptspannungstrajektorien in der numerischen Festkörpermechanik / Principal Stress Trajectories in Numerical Solid Mechanics: An Algorithm for the Visualisation of Structural Element's Stress States in Two and Three DimensionsBeyer, Frank R. 23 October 2015 (has links) (PDF)
Für die anschauliche Darstellung der Ergebnisse mechanischer Untersuchungen von Bauteilbeanspruchungen existieren diverse Visualisierungsformen. Eine solche Visualisierungsform ist die Darstellung von Hauptspannungstrajektorien, vorwiegend der Hauptnormalspannungstrajektorien des Spannungszustandes eines Bauteils. Trajektorienbilder sind im Bereich des Bauingenieurwesens insbesondere im Massivbau nach wie vor von großem Interesse. So werden beispielsweise die in der Stahlbetonnormung fest verankerten Stabwerkmodelle in erster Linie auf der Basis von Hauptspannungstrajektorien entwickelt. Aus diesem Grund gehören Trajektorienbilder heute nicht nur zum akademischen Standardlehrstoff, sondern werden auch in wissenschaftlichen Veröffentlichungen gern zur Erläuterung von komplexen Spannungszuständen herangezogen. Unglücklicherweise finden sich in der einschlägigen Fachliteratur und in wissenschaftlichen Arbeiten nicht selten grundlegende Fehldarstellungen. Diese Arbeit stellt einen geeigneten Algorithmus zur korrekten Darstellung von Trajektorienbildern auf der Basis numerisch (beispielsweise mit der Finite-Elemente-Methode) berechneter Spannungslösungen bereit.
Anhand von systematischen Untersuchungen zu verschiedenen Bauteilgeometrien und Beanspruchungs-konstellationen konnte eine Reihe von immer wieder zu findenden Fehlinterpretationen von Trajektorienbildern aufgezeigt werden. Die oft angenommene Analogie von Spannungstrajektorien zu Stromlinien von Fluidströmungen im Sinne eines „Kraftflusses“ wurde widerlegt. Das Problem bei herkömmlichen Trajektorienbildern, dass diese nicht imstande sind, Auskunft über die Größe der Spannungen zu geben, führte mitunter zu der bisweilen verbreiteten Annahme, die Verdichtung von Trajektorien in einem Trajektorienbild bedeute eine Spannungskonzentration an entsprechender Stelle. Anhand von Beispielen wird dies eindeutig widerlegt. Zur Vermeidung dieses Fehleindrucks wurde eine neue Darstellungsform eingeführt, die neben den Richtungen auch die Größen der Hauptspannungen anhand eines Farbmaßstabes ablesbar macht.
Mithilfe einer variablen Schrittweitensteuerung konnte die Genauigkeit bei der Pfadverfolgung der Trajektorien gegenüber festen Schrittweiten maßgeblich verbessert werden. Geeignete Abbruchkriterien gewährleisten das zuverlässige Auffinden von äußeren sowie innenliegenden Bauteilbegrenzungen und die Detektion geschlossener Trajektorien.
Einen wesentlichen Punkt stellen mögliche Singularitäten wie isotrope Punkte, isotrope Grenzen oder isotrope Gebiete dar, in denen die Hauptspannungsrichtungen mithilfe der Lösung des Eigenwertproblems nicht eindeutig ermittelbar sind. Deren Nichtbeachtung ist eine wesentliche Ursache für Fehldarstellungen in der Literatur. Die an solchen Stellen auftretenden Effekte und entstehenden Probleme bei der Ermittlung und Interpretierbarkeit von Trajektorienbildern wurden systematisch analysiert und entsprechende Lösungsvorschläge erarbeitet.
Bisher blieb die Verwendung von Trajektorienbildern praktisch auf zweidimensionale Probleme beschränkt. Das Potenzial von Spannungstrajektorien zur Visualisierung dreidimensionaler Spannungszustände war bislang noch unerforscht. Daher wurde das Verfahren zur Berechnung von Spannungstrajektorien auf dreidimensionale Spannungszustände übertragen. Während sich einige Teilbereiche des entwickelten Algorithmus, wie beispielsweise die Schrittweitensteuerung, problemlos unter Hinzuziehung einer weiteren Richtungskomponente für dreidimensionale Probleme erweitern lassen, hat sich gezeigt, dass diese Erweiterung auch diverse Nichttrivialitäten enthält.
Bei den aus der Berechnung erhaltenen Trajektorien handelt es sich im dreidimensionalen Fall um räumliche Kurven. Eine wesentliche Erkenntnis aus berechneten dreidimensionalen Trajektorienbildern ist, dass sich diese Raumkurven im Unterschied zum ebenen Fall in der Regel nicht schneiden und somit keine Maschen zwischen den Trajektorien wie im Zweidimensionalen aufspannen. Eine noch verbleibende Schwierigkeit bei der Anwendung dreidimensionaler Trajektorienbilder besteht in deren interpretierbarer Darstellung. In der vorliegenden Arbeit wurden hierzu einige Vorschläge erarbeitet sowie deren Anwendbarkeit getestet und bewertet.
Um die Möglichkeit der eigenständigen Berechnung von Trajektorienbildern einem breiten Nutzerkreis zugänglich zu machen, können aufbauend auf den Erkenntnissen dieser Arbeit leicht bedienbare Softwarelösungen mit grafischer Benutzeroberfläche entwickelt werden. Der Algorithmus zur Trajektorienermittlung wurde mit diesem Ansinnen in allen Details beschrieben.
Auf dem Gebiet der Trajektorien dreidimensionaler Spannungszustände hat sich darüber hinaus noch weiterer Forschungsbedarf herausgestellt, hierzu werden in der Arbeit an den entsprechenden Stellen einige Vorschläge zur Weiterentwicklung gemacht.
Der entwickelte Algorithmus ermöglicht darüber hinaus auch direkt auch die Ermittlung von Trajektorien materiell oder geometrisch nichtlinearer sowie dynamischer und sonstiger Probleme, sofern der entsprechende Spannungszustand vorliegt. Außerdem kann der Algorithmus prinzipiell auch zur Bestimmung von Hauptschubspannungstrajektorien oder Hauptmomentenlinien angewandt werden. / There are several kinds of visualisation for the illustration of the results of mechanical investigations of structural elements’ load bearing behaviour. The illustration of the stress state via principal stress trajectories, mainly principal normal stress trajectories, is one of them. In the field of civil engineering, trajectory plots are still of notable interest, particularly in solid construction. Thus, the truss models as part of the European engineering standards for steel-reinforced concrete are primarily developed using principal stress trajectories.
For this reason, trajectory plots are not only part of the academic subjects taught at university, but they are also used in scientific publications for the illustration of complex stress states. Unfortunately, fundamental misrepresentations are not rare in the relevant literature and scientific works. This work provides a suitable algorithm for accurate trajectory plots based on numerically computed stress solutions (e.g. using the finite element method).
By means of systematic investigations of several structural element’s geometries and loading situations, a number of prevalent misinterpretations was identified. The analogy often assumed between stress trajectories and streamlines of fluid flow in terms of “load flow” has been disproved. A property of traditional trajectory plots is not able to indicate the level of stress. Thus, in areas of narrowing trajectories stress concentrations are often assumed. By means of examples this assumption was clearly disproved. To prevent the appearance of such misimpressions, the stress levels are represented using a colour scale known from contour plots.
An adaptive incrementation during path tracing allows a significant increase of accuracy compared with uniform incrementation. Suitable stop criteria ensure reliable detection of outer and inner borders as well as closing of trajectories.
One important aspect is the appearance of singularities like isotropic points, isotropic borders and isotropic areas, where the principal stress directions in terms of eigenvectors are not unique. Non-observance is one of the main causes of misrepresentations of trajectory plots in literature. The effects due to the appearance of isotropic points and the arising problems for calculation and interpretation of stress trajectories were systematically analysed, and proposals for a solution were made. Up to now, the usage of trajectory plots was limited to two-dimensional problems. The potential of stress trajectories for the visualisation of three-dimensional stress states was still unexplored.
Therefore, the algorithm for the calculation of stress trajectories was augmented in three dimensions. Some parts of the two-dimensional algorithm like adaptive incrementation could be directly translated simply considering the third coordinate, whereas the necessary modifications of some parts turned out to be non-trivial.
The stress trajectories of three-dimensional stress states prove to be space curves. An essential finding from the calculated three-dimensional trajectory plots was, that three-dimensional trajectories – compared to two-dimensional trajectories – generally do not intersect each other. According to this, three-dimensional trajectories generally do not build meshes. The interpretable display of three-dimensional trajectories is still a difficulty. In this work, the applicability of some methods has been tested and assessed.
To enable a large group of users to create stress trajectory plots individually, easily operated software solutions with a graphical user interface should be developed. For this purpose, the developed algorithm for tracing trajectories is described in every detail. In the field of three-dimensional stress trajectories need of further research came to light, which is specified in the corresponding parts of this work.
In addition, the developed algorithm allows also the calculation of stress trajectories of geometrical and material non-linear as well as dynamic and other problems, if only the stress state is available.
Furthermore, the algorithm can be applied for the calculation of principal shear stress trajectories and principal moment trajectories.
|
9 |
Hauptspannungstrajektorien in der numerischen Festkörpermechanik: Ein Algorithmus zur Visualisierung der Bauteilbeanspruchung in zwei und drei DimensionenBeyer, Frank R. 16 March 2015 (has links)
Für die anschauliche Darstellung der Ergebnisse mechanischer Untersuchungen von Bauteilbeanspruchungen existieren diverse Visualisierungsformen. Eine solche Visualisierungsform ist die Darstellung von Hauptspannungstrajektorien, vorwiegend der Hauptnormalspannungstrajektorien des Spannungszustandes eines Bauteils. Trajektorienbilder sind im Bereich des Bauingenieurwesens insbesondere im Massivbau nach wie vor von großem Interesse. So werden beispielsweise die in der Stahlbetonnormung fest verankerten Stabwerkmodelle in erster Linie auf der Basis von Hauptspannungstrajektorien entwickelt. Aus diesem Grund gehören Trajektorienbilder heute nicht nur zum akademischen Standardlehrstoff, sondern werden auch in wissenschaftlichen Veröffentlichungen gern zur Erläuterung von komplexen Spannungszuständen herangezogen. Unglücklicherweise finden sich in der einschlägigen Fachliteratur und in wissenschaftlichen Arbeiten nicht selten grundlegende Fehldarstellungen. Diese Arbeit stellt einen geeigneten Algorithmus zur korrekten Darstellung von Trajektorienbildern auf der Basis numerisch (beispielsweise mit der Finite-Elemente-Methode) berechneter Spannungslösungen bereit.
Anhand von systematischen Untersuchungen zu verschiedenen Bauteilgeometrien und Beanspruchungs-konstellationen konnte eine Reihe von immer wieder zu findenden Fehlinterpretationen von Trajektorienbildern aufgezeigt werden. Die oft angenommene Analogie von Spannungstrajektorien zu Stromlinien von Fluidströmungen im Sinne eines „Kraftflusses“ wurde widerlegt. Das Problem bei herkömmlichen Trajektorienbildern, dass diese nicht imstande sind, Auskunft über die Größe der Spannungen zu geben, führte mitunter zu der bisweilen verbreiteten Annahme, die Verdichtung von Trajektorien in einem Trajektorienbild bedeute eine Spannungskonzentration an entsprechender Stelle. Anhand von Beispielen wird dies eindeutig widerlegt. Zur Vermeidung dieses Fehleindrucks wurde eine neue Darstellungsform eingeführt, die neben den Richtungen auch die Größen der Hauptspannungen anhand eines Farbmaßstabes ablesbar macht.
Mithilfe einer variablen Schrittweitensteuerung konnte die Genauigkeit bei der Pfadverfolgung der Trajektorien gegenüber festen Schrittweiten maßgeblich verbessert werden. Geeignete Abbruchkriterien gewährleisten das zuverlässige Auffinden von äußeren sowie innenliegenden Bauteilbegrenzungen und die Detektion geschlossener Trajektorien.
Einen wesentlichen Punkt stellen mögliche Singularitäten wie isotrope Punkte, isotrope Grenzen oder isotrope Gebiete dar, in denen die Hauptspannungsrichtungen mithilfe der Lösung des Eigenwertproblems nicht eindeutig ermittelbar sind. Deren Nichtbeachtung ist eine wesentliche Ursache für Fehldarstellungen in der Literatur. Die an solchen Stellen auftretenden Effekte und entstehenden Probleme bei der Ermittlung und Interpretierbarkeit von Trajektorienbildern wurden systematisch analysiert und entsprechende Lösungsvorschläge erarbeitet.
Bisher blieb die Verwendung von Trajektorienbildern praktisch auf zweidimensionale Probleme beschränkt. Das Potenzial von Spannungstrajektorien zur Visualisierung dreidimensionaler Spannungszustände war bislang noch unerforscht. Daher wurde das Verfahren zur Berechnung von Spannungstrajektorien auf dreidimensionale Spannungszustände übertragen. Während sich einige Teilbereiche des entwickelten Algorithmus, wie beispielsweise die Schrittweitensteuerung, problemlos unter Hinzuziehung einer weiteren Richtungskomponente für dreidimensionale Probleme erweitern lassen, hat sich gezeigt, dass diese Erweiterung auch diverse Nichttrivialitäten enthält.
Bei den aus der Berechnung erhaltenen Trajektorien handelt es sich im dreidimensionalen Fall um räumliche Kurven. Eine wesentliche Erkenntnis aus berechneten dreidimensionalen Trajektorienbildern ist, dass sich diese Raumkurven im Unterschied zum ebenen Fall in der Regel nicht schneiden und somit keine Maschen zwischen den Trajektorien wie im Zweidimensionalen aufspannen. Eine noch verbleibende Schwierigkeit bei der Anwendung dreidimensionaler Trajektorienbilder besteht in deren interpretierbarer Darstellung. In der vorliegenden Arbeit wurden hierzu einige Vorschläge erarbeitet sowie deren Anwendbarkeit getestet und bewertet.
Um die Möglichkeit der eigenständigen Berechnung von Trajektorienbildern einem breiten Nutzerkreis zugänglich zu machen, können aufbauend auf den Erkenntnissen dieser Arbeit leicht bedienbare Softwarelösungen mit grafischer Benutzeroberfläche entwickelt werden. Der Algorithmus zur Trajektorienermittlung wurde mit diesem Ansinnen in allen Details beschrieben.
Auf dem Gebiet der Trajektorien dreidimensionaler Spannungszustände hat sich darüber hinaus noch weiterer Forschungsbedarf herausgestellt, hierzu werden in der Arbeit an den entsprechenden Stellen einige Vorschläge zur Weiterentwicklung gemacht.
Der entwickelte Algorithmus ermöglicht darüber hinaus auch direkt auch die Ermittlung von Trajektorien materiell oder geometrisch nichtlinearer sowie dynamischer und sonstiger Probleme, sofern der entsprechende Spannungszustand vorliegt. Außerdem kann der Algorithmus prinzipiell auch zur Bestimmung von Hauptschubspannungstrajektorien oder Hauptmomentenlinien angewandt werden. / There are several kinds of visualisation for the illustration of the results of mechanical investigations of structural elements’ load bearing behaviour. The illustration of the stress state via principal stress trajectories, mainly principal normal stress trajectories, is one of them. In the field of civil engineering, trajectory plots are still of notable interest, particularly in solid construction. Thus, the truss models as part of the European engineering standards for steel-reinforced concrete are primarily developed using principal stress trajectories.
For this reason, trajectory plots are not only part of the academic subjects taught at university, but they are also used in scientific publications for the illustration of complex stress states. Unfortunately, fundamental misrepresentations are not rare in the relevant literature and scientific works. This work provides a suitable algorithm for accurate trajectory plots based on numerically computed stress solutions (e.g. using the finite element method).
By means of systematic investigations of several structural element’s geometries and loading situations, a number of prevalent misinterpretations was identified. The analogy often assumed between stress trajectories and streamlines of fluid flow in terms of “load flow” has been disproved. A property of traditional trajectory plots is not able to indicate the level of stress. Thus, in areas of narrowing trajectories stress concentrations are often assumed. By means of examples this assumption was clearly disproved. To prevent the appearance of such misimpressions, the stress levels are represented using a colour scale known from contour plots.
An adaptive incrementation during path tracing allows a significant increase of accuracy compared with uniform incrementation. Suitable stop criteria ensure reliable detection of outer and inner borders as well as closing of trajectories.
One important aspect is the appearance of singularities like isotropic points, isotropic borders and isotropic areas, where the principal stress directions in terms of eigenvectors are not unique. Non-observance is one of the main causes of misrepresentations of trajectory plots in literature. The effects due to the appearance of isotropic points and the arising problems for calculation and interpretation of stress trajectories were systematically analysed, and proposals for a solution were made. Up to now, the usage of trajectory plots was limited to two-dimensional problems. The potential of stress trajectories for the visualisation of three-dimensional stress states was still unexplored.
Therefore, the algorithm for the calculation of stress trajectories was augmented in three dimensions. Some parts of the two-dimensional algorithm like adaptive incrementation could be directly translated simply considering the third coordinate, whereas the necessary modifications of some parts turned out to be non-trivial.
The stress trajectories of three-dimensional stress states prove to be space curves. An essential finding from the calculated three-dimensional trajectory plots was, that three-dimensional trajectories – compared to two-dimensional trajectories – generally do not intersect each other. According to this, three-dimensional trajectories generally do not build meshes. The interpretable display of three-dimensional trajectories is still a difficulty. In this work, the applicability of some methods has been tested and assessed.
To enable a large group of users to create stress trajectory plots individually, easily operated software solutions with a graphical user interface should be developed. For this purpose, the developed algorithm for tracing trajectories is described in every detail. In the field of three-dimensional stress trajectories need of further research came to light, which is specified in the corresponding parts of this work.
In addition, the developed algorithm allows also the calculation of stress trajectories of geometrical and material non-linear as well as dynamic and other problems, if only the stress state is available.
Furthermore, the algorithm can be applied for the calculation of principal shear stress trajectories and principal moment trajectories.
|
10 |
Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer BeanspruchungBeyer, Frank R., Zastrau, Bernd W. January 2011 (has links)
Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. / For design and simulation of plane textile reinforced concrete structures mechanical models representing the material behaviour under biaxial loading are necessary. For one-dimensional structures several models were presented in the past. For their further development an extension for biaxial material behaviour is usually proposed. In this paper the required extensions are discussed and their feasibility for modelling is assessed.
|
Page generated in 0.0584 seconds