• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Τεχνικές εξόρυξης χώρο-χρονικών δεδομένων και εφαρμογές τους στην ανάλυση ηλεκτροεγκεφαλογραφήματος

Κορβέσης, Παναγιώτης 16 May 2014 (has links)
Η εξόρυξη χώρο-χρονικών δεδομένων αποτελεί πλέον μία από τις σημαντικότερες κατευθύνσεις του κλάδου της εξόρυξης γνώσης. Κάποια από τα βασικά προβλήματα που καλείται να αντιμετωπίσει είναι η ανακάλυψη περιοχών που εμφανίζουν ομοιότητες στην χρονική τους εξέλιξη, η αναγνώριση προτύπων που εμφανίζονται τόσο στην χωρική όσο και στη χρονική πληροφορία, η πρόβλεψη μελλοντικών τιμών και η αποθήκευση σε εξειδικευμένες βάσεις δεδομένων με σκοπό την αποδοτική απάντηση χωροχρονικών ερωτημάτων. Οι μέθοδοι που προσεγγίζουν τα παραπάνω προβλήματα καθώς και οι βασικές εργασίες της εξόρυξης γνώσης, όπως η κατηγοριοποίηση και η ομαδοποίηση, εμφανίζονται στον πυρήνα της πλειονότητας των εργαλείων ανάλυσης και επεξεργασίας χώρο-χρονικών δεδομένων. Βασικός στόχος της παρούσας εργασίας είναι η εφαρμογή μεθόδων εξόρυξης χώρο-χρονικών δεδομένων στο Ηλεκτροεγκεφαλογράφημα (ΗΕΓ), το οποίο αποτελεί μία από τις πιο διαδεδομένες τεχνικές ανάλυσης της εγκεφαλικής λειτουργίας. Τα δεδομένα που προκύπτουν από το ΗΕΓ περιέχουν τόσο χωρική όσο και χρονική πληροφορία καθώς αποτελούνται από ηλεκτρικά σήματα που προέρχονται από ηλεκτρόδια τοποθετημένα σε συγκεκριμένες θέσεις στο κρανίο. Τα βασικά προβλήματα που μελετήθηκαν στην επεξεργασία του ΗΕΓ είναι η μοντελοποίηση και η συσταδοποίηση χώρο-χρονικών δεδομένων, τα οποία οδήγησαν στην ανάπτυξη των αντίστοιχων μεθόδων. Στα πλαίσια της παρούσας εργασίας μελετήθηκε επίσης το πρόβλημα της διαχείρισης των δεδομένων ΗΕΓ και τη ανάλυσης ροών δεδομένων σε πραγματικό χρόνο. Η ενασχόληση με τα συγκεκριμένα προβλήματα οδήγησε α) στη δημιουργία καινοτόμων μεθόδων μοντελοποίησης και συσταδοποίησης χωρο-χρονικών δεδομένων, β) στον σχεδιασμό μιας βάσης δεδομένων, γ) στην μελέτη της βιβλιογραφίας στο θέμα της εξόρυξης και της διαχείρισης ροών δεδομένων και δ) στην δημιουργία μιας εφαρμογής για την ανάλυση δεδομένων σε πραγματικό χρόνο πάνω σε ένα σύστημα διαχείρισης ροών δεδομένων. Η παρούσα εργασία περιλαμβάνει ένα ένα σύνολο μεθόδων και εργαλείων ανάλυσης και διαχείρισης δεδομένων που εξετάστηκαν και χρησιμοποιήθηκαν προκειμένου να μελετηθεί η καταλληλότητά της εφαρμογής τους στις καταγραφές ΗΕΓ. Με τον τρόπο αυτό επιτυγχάνεται ο πρωταρχικός στόχος της εργασίας: η προώθηση υπαρχόντων και η δημιουργία καινοτόμων μεθόδων ανάλυσης από τον κλάδο της εξόρυξης γνώσης στα δεδομένα του ηλεκτροεγκεφαλογραφήματος. / Mining spatiotemporal data is one of the most significant topics in the field of data mining and knowledge discovery. Detecting locations that exhibit similarities in their temporal evolution, recognizing patterns that appear in both spatial and temporal information and storing spatiotemporal data in specialized databases are some of the fundamental problems tackled by researchers in this specific area. Methods and algorithms that address such problems along with the common data mining tasks (e.g. classification and clustering) are critical in the development of applications for analyzing spatiotemporal data, fact that highlights the necessity of continuous advancements of these algorithms in terms of usability, accuracy and performance. The most significant objective of the work performed during this thesis is the application of spatiotemporal data mining methods on the analysis of EEG, in order to exploit the both the spatial and the temporal nature of these data (i.e. electrodes placed on specific locations on the scalp that continuously record the electrical activity of the brain). Towards this direction the problems of modeling and clustering spatiotemporal data were extensively studied and the major outcome was the development of two corresponding methods. Furthermore, during this work the problem of managing EEG data was investigated both in the offline and the online scenario and within the latter, the state of the art in mining data streams was studied. The outcomes of this thesis related to the aforementioned problems include a) the development of a graph-based method for modeling spatiotemporal data, b) a method for clustering spatiotemporal data based on this model, c) the design of a database schema for storing eeg recording data and meta-data and d) the development of an application for online spindle detection over a data stream management system. Finally, this work aims towards the development of new and the adaptation of existing data mining methods in the context of spatiotemporal EEG analysis.
2

Application of Spatiotemporal Data Mining to Air Quality Data

Biancardi, Michael Anthony 05 1900 (has links)
This thesis explores the use of spatiotemporal data mining in the air quality domain to understand causes of PM2.5 air pollution. PM2.5 refers to fine particulate matter less than 2.5 microns in diameter and is a major threat to human and environmental health. A review of air quality modeling methods is provided, emphasizing data-driven modeling techniques. While data mining methods have been applied to air quality data, including temporal sequence mining algorithms, spatiotemporal sequence mining methods have not been broadly applied to study air pollution. However, air pollution is highly spatial in nature, so such methods can offer new insights into air quality. This thesis applies one such method, the Spatiotemporal Sequence Miner (STS Miner) algorithm, to air quality data from a low-cost sensor network to explore causes and trends related to PM2.5. To facilitate the use of this method, an open-source library called OpenSTSMiner is developed to implement this algorithm. Various domain results are found; for instance, low temperature and low relative humidity are strongly associated with worsening levels of air quality. Lastly, to highlight the utility of the STS Miner algorithm, a comparison is presented between STS Miner and spatial Markov chains, another spatiotemporal modeling method used in the air quality domain.

Page generated in 0.1575 seconds