Spelling suggestions: "subject:"spectroscopic.""
41 |
Analyse par spectroscopie Auger de phénomènes de ségrégation en surface dans de l'aluminium : cas de l'étain.Raffat, Évelyne, January 1900 (has links)
Th. 3e cycle--Cristallogr.--Grenoble 1, 1979. N°: 17.
|
42 |
Étude et réalisation d'une microsonde moléculaire à effet Raman : : quelques domaines d'application.Dhamelincourt, Paul, Unknown Date (has links)
Th.--Sci. phys.--Lille 1, 1979. N°: 441.
|
43 |
Étude des phénomènes de combustion par spectrométrie Raman laser résolue dans le temps et dans l'espace.Barj, Mohamed, January 1900 (has links)
Th. 3e cycle--Spectrochim. et méthodes d'anal.--Lille 1, 1980. N°: 846.
|
44 |
Caractère aromatique et pouvoir donneur d'électrons du dibenzothiophène et de composés apparentés.Canselier, Jean-Paul, January 1900 (has links)
Th.--Chim. phys.--Toulouse--I.N.P., 1980. N°: 47.
|
45 |
Nanokomposite : wirkung der lokalen Störungen auf das Materialverhalten / Nanocomposite : effet des perturbations locales sur le comportement du matériau / Nanocomposite : effect of local pertubations on the properties of the materialBactavatchalou, Ravindrakumar 22 October 2007 (has links)
La création de nouveaux matériaux, aux propriétés souhaitées, peut être obtenue par la combinaison de deux, trois ou plusieurs composants. L'évolution des matériaux, l'amélioration de leurs performances et l´extension de leurs fonctionnalités provoquent ainsi une augmentation de la variété des matériaux disponibles: c´est désormais l´usage qui détermine les propriétés du matériau et non l´inverse. L'ajout de nanoparticules dans un polymère peut entraîner, quantitativement via la nanostructuration du polymère et qualitativement via leurs surfaces réactives, de nouvelles caractéristiques, qui ne se limitent pas à la simple addition des propriétés de chaque composant. Les interactions entre la surface des nanoparticules et les molécules du polymère peuvent être notamment à la base de la formation d´interphases, présentant des propriétés différentes de celles du polymère massif. Afin de comprendre l´influence des nanoparticules dans les propriétés mécaniques, optiques et diélectriques du composite et plus particulièrement dans la création d´interphases, ce travail s´est intéressé à des systèmes composés de particules d´Al2O3 et de SiO2 dans une résine d´époxyde. De tels matériaux, a priori simples, affichent des résultats surprenants présentés dans cette thèse. / Creation of new materials with tailor-made properties can be achieved by the combination of two, three or more components. Their development, improvement in performance and the extension of their functionalities have enlarged the diversity of these materials: The desired purpose will define the properties of the used materials and not vice-versa. The inclusion of nanoparticles in a polymer can lead quantitatively via the occurring local structure and qualitatively via the reactive surfaces of the particles to new physical properties, which are not just a simple superposition of the properties of the single components. The interactions between the nanoparticles´ surfaces and the polymer molecules are the reason for the formation of interphases, which differ in their specificities from the polymer bulk. To understand the effect of nanoparticles on the mechanical, optical and dielectric properties of composites, and moreover the formations of interphases, an, at first believed, rather simple nanocomposite produced by including Al2O3- or SiO2- nanoparticles in an industrially common epoxy resin is studied. Such materials, a priori simples show surprising results, which will be discussed in this PhD Thesis.
|
46 |
Développement d'une sonde de spectroscopie de réflectance diffuse résolue spatialement pour la caractérisation de tissus épithéliauxDe Tillieux, Philippe 23 September 2024 (has links)
La spectroscopie de réflectance diffuse résolue spatialement (SRDrs) est une méthode de biopsie optique qui cherche à estimer les spectres des propriétés d'absorption et de diffusion d'un tissu. Ces spectres contiennent une information riche sur la composition biochimique du tissu sondé ainsi que sur son histoarchitecture. Un des domaines d'applications est la dermatologie, où la SRDrs s'avère particulièrement adaptée à la détection de mélanomes. Une détection précoce des mélanomes est étroitement liée à un meilleur pronostic de la maladie. Puisque les tissus cancéreux ont une composition biochimique et une histoarchitecture différente des tissus sains, la SRDrs est un outil efficace pour assister les médecins au moment du diagnostic. Le principal avantage de la SRDrs par rapport à d'autres méthodes de biopsie optique est que l'instrumentation est très simple, ce qui permet de développer des montages compacts, portables et peu dispendieux. De plus, le signal spectral rétrodiffusé permet d'estimer simultanément les spectres d'absorption et de diffusion. Le principal inconvénient de la SRDrs est sa résolution spatiale. En effet, il est difficile de sonder un tissu très localement car le signal lumineux est typiquement envoyé par une fibre optique d'illumination et est collecté par plusieurs fibres de détection situées à différentes distances de la fibre d'illumination. Cette disposition offre peu de contrôle sur le volume échantillonné par la lumière. Ce volume dépend du positionnement des fibres d'illumination et de détection ainsi que des propriétés du milieu. Plus le volume échantillonné est grand, plus la lumière risque d'interagir avec différentes structures dans le tissu. Ceci est problématique puisque le milieu est généralement considéré comme homogène lors de la modélisation numérique de la propagation des photons. Cette approximation n'est pas appropriée pour les tissus épithéliaux qui présentent généralement une structure en couches. L'objectif de ce projet est de développer une sonde de SRDrs pour l'évaluation quantitative des spectres des propriétés optiques de milieux bicouches, en particulier pour la détection de mélanomes. La première partie de ce projet investigue la profondeur échantillonnée minimale qu'il est possible d'atteindre en SRDrs tout en respectant les conditions de validité des approximations du modèle numérique. Lorsque les conditions de validité des approximations ne sont pas respectées, l'estimation des propriétés optiques est alors qualitative plutôt que quantitative. Une estimation qualitative peut être suffisante pour assister au diagnostic, mais une estimation quantitative permet d'améliorer la connaissance sur la composition biochimique et l'histoarchitecture des tissus. De plus, des mesures quantitatives permettent de comparer les résultats entre différents montages expérimentaux. Pour évaluer la profondeur échantillonnée minimale en SRDrs, une méthodologie est développée pour définir les distances minimales et maximales entre les fibres d'illumination et de détection nécessaires à une évaluation quantitative des propriétés optiques. Afin de réduire au minimum la profondeur échantillonnée, le cas de fibres inclinées par rapport à la surface est considéré. La deuxième partie du projet consiste en une analyse numérique du problème inverse en SRDrs. L'objectif est de concevoir la géométrie d'une sonde qui permet d'estimer quantitativement les spectres des propriétés optiques d'un milieu bicouche. Pour ce faire, un modèle numérique pour estimer les propriétés optiques d'un milieu bicouche à partir de mesures de réflectance est développé. Le coût de calcul de ce modèle est très élevé. Diverses stratégies telles que l'utilisation de simulations de Monte Carlo à l'aide de cartes graphiques et la parallélisation massive sur des serveurs externes sont utilisées pour réduire le temps de calcul. Le modèle numérique est ensuite utilisé pour analyser l'effet de chaque paramètre géométrique de la sonde sur l'estimation des propriétés optiques. Les paramètres tels que le nombre de fibres optiques, leur positionnement et leur inclinaison sont successivement testés. Une géométrie de la sonde qui optimise la précision et la robustesse de l'estimation des propriétés optiques est développée. La géométrie choisie respecte les contraintes du modèle numérique présentées à la première partie et les contraintes expérimentales liées à la détection de mélanomes. Cette géométrie de sonde est ensuite validée numériquement en simulant des données artificielles bruitées. Les capacités et les limites de la sonde à estimer les propriétés de milieux bicouches sont caractérisées. Dans la troisième partie du projet, la sonde est fabriquée et intégrée à un montage expérimental de SRDrs. Des méthodes de traitement de signal et d'étalonnage sont développées à partir de mesures expérimentales. Des fantômes optiques homogènes et bicouches de propriétés connues sont utilisés pour valider les résultats numériques obtenus précédemment. La sonde et le modèle numérique d'estimation associé estiment les coefficients optiques de chacune des couches ainsi que la position de l'interface des fantômes optiques bicouches avec une erreur de moins de 20% pour des épaisseurs de la couche superficielle variant de 0.1 à 1.5 mm. Des mesures in vivo sur la peau sont acquises afin de démontrer l'intérêt de la sonde pour des applications dermatologiques. L'épaisseur estimée de l'épiderme concorde avec les valeurs rapportées dans la littérature. / Spatially resolved diffuse reflectance spectroscopy (srDRS) is an optical biopsy method that seeks to estimate a tissue's absorption and diffusion spectra. These spectra contain rich information about the biochemical composition of the tissue and its histoarchitecture. One area of application of srDRS is dermatology, where it is particularly well suited for detecting melanoma. Early detection of melanoma is closely related to a better prognostic. Because cancerous tissues have a biochemical composition and a histoarchitecture different from those of healthy tissues, srDRS is an efficient tool to assist medical practitioners during the diagnostic. The main advantage of srDRS compared to other optical biopsy methods is that the optical setup is simple, which allows the development of compact, portable, and cheap setups. Additionally, the backscattered spectral signal is used to simultaneously estimate the absorption and the scattering properties of the tissue. The main drawback is the spatial resolution because it is difficult to probe the sample in a very localized manner. This is because the light signal is typically sent from an illumination optical fiber and is collected by several detection fibers placed at different distances from the illumination fiber. This geometry offers little control over the volume sampled by light. The sampled volume depends on fiber placement as well as the optical properties of the sample. The greater the sampled volume is, the higher the probability of light interacting with several structures. This is problematic because the sampled volume is generally assumed to be homogeneous while modeling photon propagation inside the tissue. This assumption is not adequate for epithelial tissues, which often present a layered structure. The goal of this project is to develop an srDRS probe to quantitatively estimate the spectra of optical properties in bilayered media. The primary considered application for the probe is melanoma detection. The first part of the project is to investigate the minimal sampled depth that is achievable in srDRS while respecting the conditions for which the approximations in the numerical model are valid. When these conditions are not respected, the estimation of the optical properties can only be qualitative, as opposed to quantitative. A qualitative estimation may be sufficient to assist in the diagnostic, but a quantitative estimation can improve our knowledge of tissue structure and composition and has the added benefit of being comparable across different optical setups. To evaluate the minimal sampled depth in srDRS, a methodology is developed to define the minimal and maximal distances between the illumination and detection fibers that are required to obtain a quantitative estimation of the optical properties. To reduce as much as possible the sampled depth, fibers tilted with respect to the tissue's surface are considered. The second part of the project consists in a numerical analysis of the inverse problem in srDRS, where the goal is to design a probe geometry that allows a quantitative estimation of the optical properties' spectra in a bilayered medium. To carry out this analysis, a numerical model to estimate the optical properties of a bilayered medium from reflectance measurements is developed. The computation cost for this model is very high, so several strategies, such as using GPUs for the Monte Carlo simulations and massively parallelizing the problem on computing clusters, are used to reduce the computation time. The numerical model is then used to analyze the effect of each geometrical parameter of the probe on the estimation of the optical properties. The effect of each parameter, such as the number of optical fibers, their placement, and tilt angles are iteratively tested. A probe geometry is chosen to optimize the precision and robustness of the estimation of the optical properties. The chosen geometry satisfies the constraints of the numerical model presented in the first part as well as the experimental constraints related to melanoma detection. The chosen geometry is then numerically validated. By using synthetic noisy data, the capacities and limits of the probe to estimate the properties of bilayer media are characterized. In the third part, the probe is built and integrated into an experimental srDRS setup. A signal processing and a calibration scheme are developed and applied to experimental measures. Homogeneous and bilayer optical phantoms with known optical properties are used to validate the numerical results obtained in the second part of the project. The probe and the numerical model estimate the optical properties of each layer as well as the position of the interface between the two layers in bilayer phantoms with an estimation error of less than 20% when the thickness of the superficial phantom is between 0.1 and 1.5 mm. In vivo measures on the skin are acquired to demonstrate the capabilities of the probe for dermatological applications. The estimated epidermal thickness corresponds to the values reported in the literature.
|
47 |
Conception d'un appareil de mesure par spectroscopie et cartouches microfluidiquesDaignault Bouchard, Arthur 16 January 2024 (has links)
Titre de l'écran-titre (visionné le 5 janvier 2024) / La spectroscopie est largement utilisée en chimie analytique pour analyser différents échantillons. Quant à elles, la microfluidique et la microfabrication servent à exploiter les propriétés des fluides agissant à de très basses valeurs de Reynolds. L'intégration de la spectroscopie et de la microfluidique est un domaine relativement nouveau et peu exploré, mais une intégration fiable et de qualité montre énormément de potentiel pour la recherche comme les avantages de chaque méthode peuvent être combinés. Dans un premier temps, un accessoire de mesure spectroscopique conçu par un autre étudiant à la maitrise a été adapté et amélioré dans le but de le rendre plus fiable, plus précis et plus facilement fabricable à grande échelle. Contrairement aux outils disponibles sur le marché présentement, cet outil permet d'analyser plusieurs échantillons à la fois grâce à un système de déplacement dans deux axes. L'appareil s'adapte à différents spectromètres infrarouge à transformée de Fourier (FTIR) et se sert d'un cristal à réflectance totale atténuée (ATR) afin d'analyser différents échantillons. La version conçue dans le cadre de ce projet de maîtrise s'adapte à différentes cartouches microfluidiques également conçues dans le cadre de ce projet. Dans le cadre de ce projet de maîtrise, l'appareil conçu a été testé, adapté et modifié afin de mieux répondre aux besoins des utilisateurs. Ces besoins ont été définis de façon précise afin de bien pouvoir cibler quelles fonctions sont essentielles. Les cartouches microfluidiques ont été conçues et simulées à l'aide de logiciels d'analyse par éléments finis. Une fois fabriquées, elles ont été testées sur différents spectromètres afin de valider les performances ainsi que la qualité de l'intégration des cartouches dans l'accessoire. / Spectroscopy is widely used in analytical chemistry to analyze different samples. Microfluidics and microfabrication are used to exploit the properties of fluids acting at very low Reynolds. The integration of spectroscopy and microfluidics is a relatively new and unexplored area, but a reliable and high-quality integration shows great potential for research as the advantages of each method can be combined. First, a spectroscopic measurement accessory designed by another master's student is adapted and improved to make it more reliable, more accurate and more easily manufacturable on a large scale. Contrary to the tools available on the market today, this tool allows to analyze several samples at the same time thanks to a system of displacement in two axes. The instrument is adaptable to different Fourier transform infrared spectrometers (FTIR) and uses an attenuated total reflectance crystal (ATR) to analyze different samples. The version designed in this master's project is adaptable to different microfluidic cartridges also designed in this project. Within the framework of this master's project, the designed apparatus is tested, adapted and modified in order to better meet the needs. These needs have been precisely defined in order to target which functions are essential. The microfluidic cartridges were designed and simulated using finite element analysis software. Once manufactured, they were tested on different spectrometers to validate the performance as well as the quality of the integration of the cartridges in the device.
|
48 |
Recherche de mesures innovantes pour suivre la qualité du raisin de Cabernet Franc pendant sa maturationLe Moigne, Marine 11 April 2008 (has links) (PDF)
Les professionnels de la filière vin sont à la recherche de méthodes globales pour suivre la maturité du raisin et ainsi en déterminer la qualité à la vendange pour l'élaboration de leurs vins. Dans ce contexte, le principal objectif de ce travail est de rechercher des méthodes sensorielle et instrumentales innovantes pour suivre globalement la maturation des baies de raisin de Cabernet franc. La spectroscopie VisNIR et l'analyse sensorielle des baies de raisin apparaissent comme les méthodes les plus prometteuses en terme de suivi de maturation pour la filière vin. La technique de double compression à 20 % n'est en revanche pas appropriée pour suivre la maturité « texturale ». D'autres techniques mécaniques destructives pourraient cependant être envisagées comme la pénétrométrie. La spectroscopie de fluorescence a permis de suivre la maturité phénolique du raisin. Mais, cette méthode doit être optimisée pour gagner en précision. Une méthode capable de caractériser la qualité globale du raisin a également été recherchée. La spectroscopie VisNIR et les descripteurs sensoriels permettent de caractériser les différents aspects de la qualité globale du raisin pendant sa maturation. Ces deux techniques permettent en effet une caractérisation en termes de maturités technologique, phénolique, aromatique et « texturale ». La méthode d'analyse sensorielle des baies de raisin est en cours de transfert vers les professionnels de la filière afin d'obtenir un outil d'aide à la décision pour déterminer la date de vendange. La mise au point d'un appareil portable de spectroscopie VisNIR pourrait quant à elle être envisagé afin de réaliser des mesures directes dans les parcelles.
|
49 |
Spectrométrie infrarouge atmosphérique Applications à la mesure in situ par diodes laser de H2O, CO2 et leurs isotopes dans la basse atmosphère de mars (TDLAS) et à la mesure du CO2 terrestre par le spectromètre à réseau SOIR /Le Barbu, Thibault Durry, Georges. January 2006 (has links) (PDF)
Reproduction de : Thèse doctorat : Optique et milieux dilués : Reims : 2006. / Titre provenant de l'écran titre. Bibliogr. f.
|
50 |
Diagnostic des dilatations aortiques, approche in-vitro et ex-vivo par spectroscopies vibrationnelles optiquesBonnier, Franck Sockalingum, Dhruvananda Ganesh. Manfait, Michel. January 2007 (has links) (PDF)
Reproduction de : Thèse doctorat : Pharmacie. Ingénierie de la santé. Biophysique : Reims : 2007. / Titre provenant de l'écran-titre. Bibliographie f.241-250.
|
Page generated in 0.0692 seconds