• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 9
  • 8
  • 5
  • 4
  • Tagged with
  • 97
  • 97
  • 97
  • 27
  • 26
  • 23
  • 23
  • 19
  • 19
  • 17
  • 16
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermal transport in a two-dimensional Kitaev spin liquid

Pidatella, Angelo 15 November 2019 (has links)
Quantum spin liquids represent a novel phase of magnetic matter where quantum fluctuations are large enough to suppress the formation of local order parameters, even down to zero temperature. Quantum spin liquid states can emerge from frustrated quantum magnets. These states show several peculiar properties, such as topological order, fractional excitations, and long-range entanglement. The Kitaev spin model on the honeycomb lattice is one of the few models proposed which can exactly show the existence of a $\mathbb{Z}_2$ quantum spin liquid. The model describes spins featuring frustrated compass interactions, and it exhibits a quantum spin liquid ground state. The model's ground state can be found exactly by representing spins in terms of Majorana fermions. It turns out that spin excitations fractionalize into two degrees of freedom: spinless matter fermions and flux excitations of the emergent $\mathbb{Z}_2$ gauge theory. Recently, possible solid-state realizations of Kitaev quantum spin liquids have been proposed in a class of frustrated Mott insulators. Unfortunately, experiments can not unambiguously identify quantum spin liquids, due to their elusive nature. Nevertheless, indirect observations on a spin liquid state can be done by looking at its excitations. Along this line, thermal transport investigations provide for an option to study heat-carrying excitations, and thus the properties of the related spin liquid state. In this doctoral thesis work, I performed a study of longitudinal thermal transport properties in the two-dimensional Kitaev spin model. This study aims to advance the understanding of transport in prototypical frustrated quantum magnets that might harbor Kitaev physics, and in particular quantum spin liquid states. For this purpose, I explored the model for varying exchange coupling regimes $-$ to underline the impact of anisotropy on transport $-$ and I studied transport over a wide range of temperatures. Transport properties have been explored within the formalism of the linear response theory. Based on the latter, thermal transport coefficients can be evaluated by calculating dynamical energy-current auto-correlation functions. First, I performed an analytical study of the uniform gauge sector of the model $-$ where excitations of gauge degrees of freedom are neglected. Analytical findings for the energy-current correlations, and their related transport coefficients, imply a finite-temperature ballistic heat conductor in terms of free matter fermion excitations $-$ independent of exchange couplings. Second, thermal transport has been studied at finite temperatures, considering thermal gauge excitations off the uniform gauge sector. For this purpose, I made use of two complementary numerical methods able to treat finite-temperature systems. On the one hand, I resorted on the exact diagonalization of the Kitaev Hamiltonian given in terms of fermions and a real-space dependent $\mathbb{Z}_2$ gauge potential, to study relatively small systems. On the other hand, I used an approximate method based on a mean-field treatment of thermal gauge fluctuations. The method allowed to extend the study of thermal transport to systems with up to $\sim\mathcal{O}(10^4)$ spinful sites. It made possible the computation of correlation functions by reducing the exact trace over all gauge states to an average over dominant gauge states suited to a given temperature range. The reliability of the method has been checked by comparing to numerically exact thermodynamics of systems. Based on the thermodynamic analysis, the method has been restricted to a temperature range where the mean-field treatment of gauge fluctuations is acceptable. Within such temperature range, the method succeeded in well reproducing exact results. The prime advantage of this method is its capability to reveal important features in the energy-current correlation spectra, not captured by the exact diagonalization approach because of finite-size effects. I found that the energy-current correlation spectra, in the presence of thermal gauge excitations, show clear signatures of spin fractionalization. In particular, the low-energy part of spectra displays features arising from a temperature-dependent matter-fermion density relaxation off an emergent thermal gauge disorder. This static gauge disorder also leads to the appearance of a pseudogap in the zero-frequency limit, which closes in the thermodynamic limit. The extracted dc heat conductivity is consequently influenced by this interplay between matter fermions and gauge degrees of freedom. The anisotropy in the exchange couplings moves Kitaev systems through gapless and gapped phases of the matter fermion sector. Effects of anisotropy are visible in the dc conductivities which display a low-temperature dependence crossing over from power-law to exponentially activated behavior upon entering the gapped phase. Therefore, I found that in the thermodynamic limit, two-dimensional Kitaev systems feature dissipative transport, regardless of exchange couplings. This finding is in contrast to the ballistic transport found discarding gauge excitations in the uniform gauge sector, which underlines the relevance of gauge degrees of freedom in thermal transport properties of Kitaev systems.
62

Electron Transport in Chalcogenide Nanostructures

Nilwala Gamaralalage Premasiri, Kasun Viraj Madusanka 28 January 2020 (has links)
No description available.
63

Two-dimensional ferromagnetism, strong Rashba effect and valence changes in lanthanide intermetallics: A photoemission study

Schulz, Susanne 13 June 2023 (has links)
The search for novel technologies like spin-based electronics and suitable materials for respective devices requires a profound understanding of fundamental interactions regarding electron spin and related properties. In the same context, with ongoing device miniaturisation, surface-related phenomena become increasingly important. Here, we study the electronic and magnetic properties of quasi-2D electron states at a metallic surface under the influence of the Rashba effect and exchange coupling to localised 4f moments that order magnetically at low temperatures. Particularly, in the considered systems, both interactions are of similar strengths, a case which is rather unexplored in the literature. Our model system is the (001) surface of intermetallic LnIr2Si2 compounds with ThCr2Si2 structure, where Ln = lanthanide. With this work, we continue our long-term systematic study of the LnT2Si2 compounds with T = Rh, where the Rashba-like spin-orbit coupling is about a hundred times weaker than the exchange interaction. Using ARPES and DFT we explore with GdIr2Si2 and EuIr2Si2 two representatives of the LnIr2Si2 family, which are both characterised by the insensitivity of the 4f shell to the crystal electric field. On the other hand, they have fundamentally different bulk properties. GdIr2Si2 is a robust bulk antiferromagnet with a high ordering temperature of 87 K, whereas EuIr2Si2 is a mixed-valent material with a non-magnetic ground state in the bulk. The mean Eu valency is strongly temperature dependent, changing continuously from a nearly divalent magnetic configuration at room temperature to a nearly trivalent non-magnetic Eu state below 50K. Studying the surface states in both compounds we find that the magnitude of the Rashba-like spin-orbit interaction increases tremendously in comparison to the isoelectronic Rh compounds. This is reflected in a huge splitting of the surface state bands and emphasizes the importance of atomic spin-orbit coupling in high Z elements for the strength of the Rashba effect. Employing DFT, which reproduces the measured band structure very accurately, we find the same exotic triple winding of the electron spin along the isoenergy contours of the surface state bands as reported in terms of a cubic Rashba effect for the Rh compounds. This proves the generic nature of the surface states and their universal properties in the considered LnT2Si2 compounds. With the ordering of the 4f moments at low temperatures, spin structure and surface band dispersion undergo significant changes induced by the exchange interaction. Pronounced asymmetries emerge in the band dispersion, which allow for the determination of the magnetisation axis. We demonstrate that this is even possible if spectral structures originating from different magnetic domains overlap in the spectra. Remarkably, we find respective asymmetries in EuIr2Si2, too, despite the almost trivalent, and thus non-magnetic Eu state at low temperatures. With complementary experimental techniques like x-ray absorption, x-ray linear and circular dichroism as well as by taking photoelectron diffraction into account, we demonstrate that in the surface Si–Ir–Si–Eu four-layer block Eu is nearly divalent and magnetically active. The associated Eu moments order ferromagnetically below 49K. In the case of Eu termination, we find that the 4f moments of the divalent Eu ions at the surface order ferromagnetically below 10K, too, and unveil thus another occurrence of 2D surface-related magnetism in the same non-magnetic bulk compound. Simultaneously, the mixed-valent properties of EuIr2Si2 and the strong temperature dependence of the mean Eu valency are clearly reflected in the electronic structure of the bulk in a smooth expansion of the Doughnut Fermi surface sheet with increasing temperature, which is interpreted as a band-filling effect. Our results show the high tunability of the electron spin by combining spin-orbit coupling and structural inversion asymmetry with the exchange interaction, which is at the heart of spintronics applications. The disclosure of controllable 2D magnetism at the surface of a non-magnetic bulk compound, which is enabled by an instability in the 4f shell, nominates valence fluctuating 4f compounds, especially with Eu and Sm, to be promising candidates for fundamental studies and applications. Our study moreover demonstrates the richness and versatility of 4f physics that may differ significantly at the surface and in the bulk.:1. Introduction 2. Preliminary Studies 2.1. Short introduction to lanthanides and 4f physics 2.2. LnT2Si2 compounds 3. Foundations 3.1. Band structure 3.2. Bulk states, surface states and surface resonances 3.3. The principles of photoelectron spectroscopy 3.4. Angle-resolved photoelectron spectroscopy 3.5. Photoabsorption and resonant photoelectron spectroscopy 3.6. X-ray absorption spectroscopy 3.6.1. X-ray magnetic circular dichroism 3.6.2. X-ray magnetic linear dichroism 3.7. Photoelectron diffraction 3.8. Synchrotron and synchrotron radiation 3.9. Density functional theory 4. Methods 4.1. Experimental details 4.2. DFT calculations 5. GdIr2Si2 5.1. Introduction 5.2. Results and discussion 5.2.1. Paramagnetic phase 5.2.2. Magnetically ordered phase 5.3. Summary 6. EuIr2Si2 6.1. Introduction 6.2. Results and discussion 6.2.1. Photoemission from the Eu 4f shell 6.2.2. ARPES on the Si-terminated surface 6.2.3. X-ray magnetic linear and circular dichroism 6.2.4. Eu termination 6.2.5. Determination of the mean Eu valency in the subsurface layers 6.2.6. Bulk properties 6.3. Summary 7. Conclusion / Die Suche nach neuartigen Technologien wie spinbasierte Elektronik sowie nach geeigneten Materialien für entsprechende Bauteile erfordert ein tiefgreifendes Verständnis der Wechselwirkungen des Elektronenspins und damit verbundener Materialeigenschaften. Mit der zunehmenden Miniaturisierung von Bauteilen gewinnen in diesem Zusammenhang auch Oberflächenphänomene zunehmend an Bedeutung. In dieser Arbeit untersuchen wir die elektronischen und magnetischen Eigenschaften quasizweidimensionaler elektronischer Zustände an metallischen Oberflächen unter dem Einfluss des Rashba-Effekts und der Austauschwechselwirkung mit lokalisierten 4f Momenten, die bei tiefen Temperaturen magnetisch ordnen. Dabei liegt die Besonderheit der untersuchten Systeme darin, dass beide Wechselwirkungen von vergleichbarer Stärke sind. Dieser Fall ist in der Fachliteratur bislang unterrepräsentiert. Unser Modellsystem ist die (001)-Oberfläche intermetallischer LnIr2Si2 Verbindungen mit ThCr2Si2 Struktur, wobei Ln ein Lanthanoidenelement darstellt. Dabei führen wir die langjährige und systematische Untersuchung von LnT2Si2 Verbindungen mit T = Rh fort, in denen die Rashba-artige Spin-Bahn-Kopplung ungefähr 100-mal schwächer als die Austauschwechselwirkung ist. Mit Hilfe von winkelaufgelöster Photoelektronenspektroskopie (ARPES) und Dichtefunktionaltheorie (DFT) erkunden wir mit GdIr2Si2 und EuIr2Si2 zwei Vertreter der LnT2Si2 Familie, die beide durch die Insensibilität der 4f Schale gegenüber dem Kristallfeld ausgezeichnet sind. Zugleich haben sie grundsätzlich verschiedene Volumeneigenschaften. GdIr2Si2 ist ein robuster Volumenantiferromagnet mit einer hohen Ordnungstemperatur von 87K, wohingegen EuIr2Si2 eine gemischtvalente Verbindung mit einem nicht-magnetischen Volumengrundzustand ist. Die mittlere Eu Valenz ist stark temperaturabhängig, sie ändert sich kontinuierlich von einer nahezu zweiwertigen Konfiguration bei Raumtemperatur zu einem beinahe dreiwertigen, nicht-magnetischen Eu Zustand unterhalb von _ 50K. Die Untersuchung der Oberflächenzustände in beiden Verbindungen zeigt, dass die Stärke der Rashba-artigen Spin-Bahn-Kopplung gegenüber den isoelektronischen Rh Verbindungen erheblich zunimmt. Dies spiegelt sich in einer riesigen Aufspaltung der Oberflächenbänder wider und unterstreicht die Bedeutung der atomaren Spin-Bahn-Kopplung in Elementen mit großer Kernzahl Z für die Stärke des Rashba-Effekts. Unsere DFT Rechnungen reproduzieren die gemessene Bandstruktur mit hoher Genauigkeit und offenbaren dieselbe Dreifachwindung des Spins entlang der Konturen konstanter Energie, die schon als kubischer Rashba-Effekt in den Rh Verbindungen beobachtet wurde. Hierin zeigt sich das allgemeingültige Wesen der Oberflächenzustände und deren universelle Eigenschaften in den betrachteten LnT2Si2 Verbindungen. Das Ordnen der 4f Momente bei niedrigen Temperaturen führt zu starken Veränderungen in der Spinstruktur und der Dispersion der Oberflächenbänder durch die einsetzende Austauschwechselwirkung. In der Bandstruktur bilden sich starke Asymmetrien, aus denen die Magnetisierungsachse bestimmt werden kann. Wir zeigen, dass dies sogar dann noch möglich ist, wenn sich spektrale Strukturen überlagern, die von unterschiedlichen magnetischen Domänen stammen. Besonders bemerkenswert ist, dass entsprechende Asymmetrien auch in EuIr2Si2 auftreten, trotz des nahezu dreiwertigen und damit nicht-magnetischen Eu bei tiefen Temperaturen. Mit komplementären experimentellen Methoden wie Röntgenabsorption, linearem und zirkularem Röntgendichroismus als auch durch die Berücksichtigung von Beugungseffekten in der Photoelektronenspektroskopie zeigen wir, dass Eu im Si–Ir–Si–Eu Oberflächenblock beinahe zweiwertig und magnetisch aktiv ist. Die zugehörigen Eu Momente ordnen unterhalb von 49K ferromagnetisch. Im Fall der Eu-Terminierung stellen wir fest, dass auch die 4f Momente der zweiwertigen Eu-Ionen an der Oberfläche unterhalb von 10K ferromagnetisch geordnet sind, und enthüllen damit ein weiteres Vorkommen zweidimensionalen, oberflächenbezogenen Magnetismus in derselben, nichtmagnetischen Volumenverbindung. Gleichzeitig spiegeln sich die gemischtvalenten Eigenschaften von EuIr2Si2 deutlich in der elektronischen Volumenbandstruktur in einer kontinuierlichen Ausdehnung der Doughnut-Fermifläche mit steigender Temperatur wider. Dies interpretieren wir als Bandfüllungseffekt. Unsere Ergebnisse zeigen die hohe Einstellbarkeit des Elektronenspins durch die Kombination von Spin-Bahn-Kopplung und struktureller Inversionsasymmetrie mit der Austauschwechselwirkung, was die Grundlage für Anwendungen in der spinbasierten Elektronik bildet. Die Enthüllung von kontrollierbarem, zweidimensionalem Magnetismus an der Oberfläche einer Verbindung mit instabiler 4f Schale, die im Volumen nicht-magnetisch ist, nominiert gemischtvalente 4f Verbindungen, insbesondere mit Eu und Sm, als vielversprechende Kandidaten für Grundlagenforschung und Anwendungen. Unsere Studie zeigt zudem den Reichtum und die Vielseitigkeit von 4f Systemen, deren Eigenschaften sich an der Oberfläche deutlich vom Volumen unterscheiden können.:1. Introduction 2. Preliminary Studies 2.1. Short introduction to lanthanides and 4f physics 2.2. LnT2Si2 compounds 3. Foundations 3.1. Band structure 3.2. Bulk states, surface states and surface resonances 3.3. The principles of photoelectron spectroscopy 3.4. Angle-resolved photoelectron spectroscopy 3.5. Photoabsorption and resonant photoelectron spectroscopy 3.6. X-ray absorption spectroscopy 3.6.1. X-ray magnetic circular dichroism 3.6.2. X-ray magnetic linear dichroism 3.7. Photoelectron diffraction 3.8. Synchrotron and synchrotron radiation 3.9. Density functional theory 4. Methods 4.1. Experimental details 4.2. DFT calculations 5. GdIr2Si2 5.1. Introduction 5.2. Results and discussion 5.2.1. Paramagnetic phase 5.2.2. Magnetically ordered phase 5.3. Summary 6. EuIr2Si2 6.1. Introduction 6.2. Results and discussion 6.2.1. Photoemission from the Eu 4f shell 6.2.2. ARPES on the Si-terminated surface 6.2.3. X-ray magnetic linear and circular dichroism 6.2.4. Eu termination 6.2.5. Determination of the mean Eu valency in the subsurface layers 6.2.6. Bulk properties 6.3. Summary 7. Conclusion
64

Superfluids of Fermions in Spin-Orbit Coupled Systems and Photons inside a Cavity

Yu, Yi-Xiang 11 December 2015 (has links)
This dissertation introduces some new properties of both superfluid phases of fermions with spin-orbit coupling (SOC) and superradiant phases of photons in an optical cavity. The effects of SOC on the phase transition between normal and superfluid phase are revealed; an unconventional crossover driven by SOC from the Bardeen-Cooper-Schrieffer (BCS) state to the Bose-Einstein condensate (BEC) state is verified in three different systems; and two kinds of excitations, a Goldstone mode and a Higgs mode, are demonstrated to occur in a quantum optical system. We investigate the BCS superfluid state of two-component atomic Fermi gases in the presence of three kinds of SOCs. We find that SOC drives a class of BCS to BEC crossover that is different from the conventional one without SOC. Here, we extend the concepts of the coherence length and Cooper-pair size in the absence of SOC to Fermi systems with SOC. We study the dependence of chemical potential, coherence length, and Cooper-pair size on the SOC strength and the scattering length in three dimensions (3D) (or the twobody binding energy in two dimensions (2D)) for three attractively interacting Fermi gases with 3D Rashba, 3D Weyl, and 2D Rashba SOC respectively. By adding a population imbalance to a Fermi gas with Rashba-type SOC, we also map out the finite-temperature phase diagram. Due to a competition between SOC and population imbalance, the finite-temperature phase diagram reveals a large variety of new features, including the expanding of the superfluid state regime and the shrinking of both the phase separation and the normal regimes. We find that the tricritical point moves toward a regime of low temperature, high magnetic field, and high polarization as the SOC strength increases. Besides Fermi fluids, this dissertation also gives a new angle of view on the superradiant phase in the Dicke model. Here, we demonstrate that Goldstone and Higgs modes can be observed in an optical system with only a few atoms inside a cavity. The model we study is the U(1)/Z2 Dicke model with N qubits (two-level atoms) coupled to a single photon mode.
65

<b>TOPOLOGICAL AND QUANTUM TRANSPORT IN CHIRAL TWO-DIMENSIONAL TELLURIUM</b>

Chang Niu (18109696) 06 March 2024 (has links)
<p dir="ltr"><b>Tellurium (Te) stands out as an elemental narrow-bandgap semiconductor characterized by its distinctive chiral crystal structure. The interplay between fundamental symmetries and the topological properties of electrons has garnered significant attention in the scientific community. With its unique chiral crystal structure featuring three Tellurium atoms spiraling within a single unit cell, Tellurium offers a singular material system. This system provides an exceptional opportunity to explore the novel quantum and topological transport properties of electrons. Hydrothermally grown two-dimensional (2D) Te with a thickness of several nanometers gives us an opportunity to precisely control the carrier density and the carrier type in Te using gate voltage. In this dissertation, the spin-orbit coupling (SOC) of Te is quantitatively analyzed using the weak anti-localization effect. The strong SOC also gives rise to the Weyl point at the band edge of the conduction band. The topological nontrivial band structure of Te is characterized by a π phase shift in the Shubnikov-de Haas (SdH) oscillations. Due to the high mobility, the quantum Hall effect is measured with low spin and valley Landau levels controlled by an electric and magnetic field. Bilayer charge transferable quantum Hall states of Weyl fermions is observed in a wide Te quantum well. The topological phase transition from a semiconductor to Weyl semimetal under high pressure is studied up to 2.47 GPa. The chirality of 2D Te is separated by the hot sulfuric acid etching technique. The spin configuration and topological charge of the Weyl node exhibit a reversal in different chiralities, leading to an inverse in nonlinear responses, encompassing both electrical (nonreciprocal transport in the longitudinal direction and nonlinear planar Hall effect in the transvers direction) and optical phenomena (circular photogalvanic effect and circular photovoltaic effect). Our results unveil the topological nature of the Tellurium (Te) band structures, offering a promising avenue for controlling charge and spin transport within the chiral degree of freedom.</b></p>
66

Analyse de spectres d'absorption avec creux d'interférence de complexes du nickel(II)

Nolet, Marie-Christine 07 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Des creux d’interférence sont fréquemment observés dans les spectres d’absorption de complexes d’éléments de transition. Ces creux résultent de l’interaction entre des états électroniques excités de multiplicité de spin différente. Un modèle de puits de potentiel couplés pour les états électroniques est nécessaire pour l’analyse des spectres d’absorption. Une équation analytique, dérivée de ce modèle, permet de calculer les spectres d’absorption non-résolus. L’impact d’une variation de chaque paramètre sur l’allure des spectres calculés est présenté. Le calcul avec l’équation analytique de spectres d’absorption peu résolus de complexes du nickel(II) de coordination octaédrique reproduit bien la région du maximum de la bande et du creux. Les paramètres obtenus sont quantitatifs et ont une signification physique. Le modèle est aussi employé pour l’analyse des spectres avec des progressions vibroniques résolues, mais dont les différences entre progressions sont non-constantes. Les calculs numériques exacts reproduisent bien les écarts entre les maxima des progressions et leur intensité. / Interference dips are often observed in absorption spectra of transition metal complexes. These dips resuit from the interaction between excited states with different spin multiplicities. A mode! of coupled potential wells for the electronic states is required to analyse the absorption spectra. The pararneters of an analytical equation derived from this modet are varied individually. The analytical equation is used to calculate the unresolved absorption spectra of octahedral nickel(II) complexes. The calculated spectra reproduce well the experimental ones, especially in the regions of the dip and of the maximum of the band. The values for the parameters ohtained from the equation are physically relevant, quantitative and give precise information on excited-state properties for the complexes studied. Numerical calculations of absorption spectra showing resolved progressions with nonconstant energy intervals are done with the model and reproduce well the intervals between the maxima of the progression and their intensities.
67

Exploration of Strong Spin-Orbit Coupling In InSbAs Quantum Wells For Quantum Applications

Sara Metti (17519073) 02 December 2023 (has links)
<p dir="ltr">InSbAs is a promising platform for exploring topological superconductivity and spin-based device applications, thanks to its strong spin-orbit coupling (SOC) and high effective <i>g</i>-factor. This thesis investigates low-temperature transport of electrons confined in InSb<sub>1-x</sub>As<sub>x</sub> quantum wells. Specifically, we study the properties of electrons confined in 2D and 0D by fabricating gated Hall bars and gate-defined quantum dots. Theoretical considerations suggest that InSbAs will have stronger SOC and a larger effective <i>g</i>-factor compared to InAs and InSb. Both the SOC and effective <i>g</i>-factor change as a function of arsenic mole fraction, but much remains to be understood in real material systems. Here, we study the dominant scattering mechanisms, effective mass, spin-orbit coupling strength, and the <i>g</i>-factor in InSb<sub>1-x</sub>As<sub>x</sub> quantum wells grown by molecular beam epitaxy. </p><p dir="ltr">We explore 30 nm InSb<sub>1-x</sub>As<sub>x</sub> quantum wells with arsenic mole fractions of <i>x</i> = 0.05, 0.13, and 0.19. The 2DEG properties were studied by fabricating gated Hall bars and placing them in a perpendicular magnetic field at low temperatures (T = 10 - 300 mK). All samples showed high-quality transport with mobility greater than 100,000 cm<sup>2</sup>/Vs. For the <i>x</i> = 0.05 sample, the 2DEG displays a peak mobility μ = 2.4 x 10<sup>5</sup> cm<sup>2</sup>/Vs at a density of <i>n</i> = 2.5 x 10<sup>11</sup> cm<sup>-</sup><sup>2</sup>. We investigated the evolution of mobility as a function of arsenic mole fraction and 2DEG density for all samples. As the arsenic mole fraction increases, peak mobility decreases, and the dependence of mobility on density becomes weaker, suggesting that short-range scattering becomes the dominant scattering mechanism. We extracted an alloy scattering rate of τ<sub>alloy</sub> = 45 ns<sup>-1</sup> per % As, an important parameter for understanding the impact of disorder on induced superconductivity. The high mobility, strong spin-orbit coupling, and low effective mass in this material system resulted in a beating pattern in the Shubnikov de Haas oscillations, allowing for the extraction of the Rashba parameter as a function of density and arsenic mole fraction. We observed a gate tunable spin-orbit coupling and, as predicted by theory, an increase in spin-orbit coupling with increasing arsenic mole fraction. For the sample with x = 0.19, the highest Rashba parameter is α<sub>R</sub> ~ 300 meVÅ, which is significantly higher than in InSb. </p><p dir="ltr">In addition, we explored 0D confinement by fabricating a gate-defined quantum dot in an InSb<sub>0</sub><sub>.87</sub>As<sub>0.13</sub> quantum well. By studying the evolution of Coulomb blockade peaks and differential conductance peaks as a function of magnetic field, a nearly isotropic in-plane effective <i>g</i>-factor in the [1-10] and [110] crystallographic directions was extracted, ranging from 49-58. The values extracted are 1.8 times higher than in a quantum dot fabricated in pure InSb. Furthermore, this study produced the first demonstration of a tunable spin-orbit coupling in this material system. This was achieved by measuring the avoided crossing gap, mediated by spin-orbit coupling, between the ground state and excited state in a magnetic field. The avoided crossing gap indicates the strength of the spin-orbit coupling; the maximum energy separation extracted is Δ<sub>SO</sub> ~100 μeV. </p><p dir="ltr">Our work should stimulate further investigation of InSbAs quantum wells as a promising platform for applications requiring strong spin-orbit coupling, such as topological superconductivity or spin-based devices.</p>
68

Reduced dimensionality quantum dynamics of chemical reactions

Remmert, Sarah M. January 2011 (has links)
In this thesis a reduced dimensionality quantum scattering model is applied to the study of polyatomic reactions of type X + CH4 <--> XH + CH3. Two dimensional quantum scattering of the symmetric hydrogen exchange reaction CH3+CH4 <--> CH4+CH3 is performed on an 18-parameter double-Morse analytical function derived from ab initio calculations at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. Spectator mode motion is approximately treated via inclusion of curvilinear or rectilinear projected zero-point energies in the potential surface. The close-coupled equations are solved using R-matrix propagation. The state-to-state probabilities and integral and differential cross sections show the reaction to be primarily vibrationally adiabatic and backwards scattered. Quantum properties such as heavy-light-heavy oscillating reactivity and resonance features significantly influence the reaction dynamics. Deuterium substitution at the primary site is the dominant kinetic isotope effect. Thermal rate constants are in excellent agreement with experiment. The method is also applied to the study of electronically nonadiabatic transitions in the CH3 + HCl <--> CH4 + Cl(2PJ) reaction. Electrovibrational basis sets are used to construct the close-coupled equations, which are solved via Rmatrix propagation using a system of three potential energy surfaces coupled by spin-orbit interaction. Ground and excited electronic surfaces are developed using a 29-parameter double-Morse function with ab initio data at the CCSD(T)/ccpV( Q+d)Z-dk//MP2/cc-pV(T+d)Z-dk level of theory, and with basis set extrapolated data, both corrected via curvilinear projected spectator zero-point energies. Coupling surfaces are developed by fitting MCSCF/cc-pV(T+d)Z-dk ab initio spin orbit constants to 8-parameter functions. Scattering calculations are performed for the ground adiabatic and coupled surface models, and reaction probabilities, thermal rate constants and integral and differential cross sections are presented. Thermal rate constants on the basis set extrapolated surface are in excellent agreement with experiment. Characterisation of electronically nonadiabatic nonreactive and reactive transitions indicate the close correlation between vibrational excitation and nonadiabatic transition. A model for comparing the nonadiabatic cross section branching ratio to experiment is discussed.
69

Conductivité de spin et effets magnétiques dans les systèmes quantiques désordonnés / Spin conductivity and magnetic effects in disordered quantum systems

Van Den Berg, Tineke 19 October 2012 (has links)
Dans une première partie nous explorerons les effets d'impuretés désordonnées et paramagnétiques sur l'effet spin-Hall intrinsèque dans un gaz d'électrons bi-dimensionnel avec un couplage spin-orbite de Rashba. A faible désordre, la conductivité de spin-Hall reste proche de sa valeur d'échantillon pur, comme le montrent un calcul analytique de réponse linéaire et une étude numérique. De fortes fluctuations sont toutefois observées, elles augmentent avec l'importance du désordre. Pour caractériser la dynamique d'un paquet d'onde sur un réseau, nous mesurons sa taille, le taux de participation inverse, et sa dimension de corrélation. Le système subit une transition de localisation à une valeur critique du désordre. Dans le régime localisé, la densité locale d'états n'est plus uniforme et ne coïncide plus avec la densité totale d'états. Une corrélation antiferromagnétique entre les impuretés et les électrons de conduction est observée. Après la transition de localisation, la conductivité de spin augmente significativement. La première correction quantique dans le formalisme de réponse linéaire, contribue positivement à la conductivité de spin-Hall. Dans une seconde partie, le modèle de Hubbard avec double échange avec corrélations électroniques est étudié par la méthode du champ moyen dynamique (DMFT) dans l'approximation de non-croisement pour la résolution du problème d'impureté (NCA). Autour du quart remplissage, un polaron orbital est observé et décrit à l'aide d'un Hamiltonien effectif. Le double échange dans les semi-conducteurs magnétiques dilués est étudié dans l'approximation du potentiel cohérent (CPA). / Spintronics is a research area that is concerned with the storage and transfer of information by means of electron spins. In the first part we investigated the intrinsic spin Hall effect in the presence of disordered magnetic impurities in a paramagnetic state in a two dimensional electron gas with Rashba spin-orbit coupling. In the presence of weak magnetic disorder the spin Hall conductivity stays close to its universal (clean system) value, as shown by analytical linear response calculations and numerical simulations. Heavy spin conductivity fluctuations are observed, that increase with disorder strength. To investigate the spreading of a wavepacket on a lattice we measure the wavepacket width, the inverse participation ratio and the (2)-fractal dimension. It is shown the system undergoes a localization transition at a critical disorder strength. In the localized regime the local density of states is not uniform anymore. An anti-ferromagnetic correlation between electron spins and impurity magnetic moments is observed. Beyond the localization transition the spin conductivity increases significantly. The first quantum (Cooperon) corrections in the linear response formalism are shown to contribute positively to the spin Hall conductivity. In the second part the double exchange Hubbard model for correlated electron systems is studied using dynamical mean field theory (DMFT) with the non-crossing approximation (NCA). Around quarter filling an orbital polaron is observed, numerically and in an effective Hamiltonian. Double exchange in dilute magnetic semiconductors is studied using the coherent potential approximation (CPA).
70

Propriedades eletrônicas dos isolantes topológicos / Electronic properties of Topological Insulators

Abdalla, Leonardo Batoni 05 February 2015 (has links)
Na busca de um melhor entendimento das propriedades eletrônicas e magnéticas dos isolantes topológicos nos deparamos com uma das suas caraterísticas mais marcantes, a existência de estados de superfície metálicos com textura helicoidal de spin os quais são protegidos de impurezas não magnéticas. Na superfície estes canais de spin possuem um potencial enorme para aplicações em dispositivos spintrônicos. Muito há para se fazer e o tratamento via cálculos de primeiros princípios por simulações permite um caráter preditivo que corrobora na elucidação de fenômenos físicos via análises experimentais. Nesse trabalho analisamos as propriedades eletrônicas de isolantes topológicos tais como: (Bi,Sb)$_2$(Te,Se)$_3$, Germaneno e Germaneno funcionalizado. Cálculos baseados em DFT evidenciam a importância das separações entre as camadas de Van der Waals nos materiais Bi$_2$Se$_3$ e Bi$_2$Te$_3$. Mostramos que devido a falhas de empilhamento, pequenas oscilações no eixo de QLs (\\textit{Quintuple Layers}) podem gerar um desacoplamento dos cones de Dirac, além de criar estados metálicos na fase \\textit{bulk} de Bi$_2$Te$_3$. Em se tratando do Bi$_2$Se$_3$ um estudo sistemático dos efeitos de impurezas de metais de transição foi realizado. Observamos que há quebra de degenerescência do cone de Dirac se houver magnetização em quaisquer dos eixos. Além disso se a magnetização permanecer no plano, além de uma pequena quebra de degenerescência, há um deslocamento do mesmo para outro ponto da rede recíproca. No entanto, se a magnetização apontar para fora do plano a quebra ocorre no próprio ponto $\\Gamma$, porém de maneira mais intensa. Importante enfatizar que além de mapear os sítios com suas orientações magnéticas de menor energia observamos que a quebra da degenerescência está diretamente relacionada com a geometria local da impureza. Isso proporciona imagens de STM distintas para cada sítio possível, permitindo que um experimental localize cada situação no laboratório. Estudamos ainda a transição topológica na liga (Bi$_x$Sb$_{1-x}$)$_2$Se$_3$, onde identificamos um isolante trivial e topológico para $x=0$ e $x=1$. Apesar de óbvia a existência de tal transição, detalhes importantes ainda não estão esclarecidos. Concluímos que a dopagem com impurezas não magnéticas proporciona uma boa técnica para manipulação e engenharia de cone nesta família de materiais, de forma que dependendo da faixa de dopagem podemos eliminar a condutividade que advém do \\textit{bulk}. Finalmente estudamos superfícies de Germaneno e Germaneno funcionalizado com halogênios. Usando uma funcionalização assimétrica e com a avalição do invariante topológico $Z_2$ notamos que o material Ge-I-H é um isolante topológico podendo ser aplicado na elaboração de dispositivos baseados em spin. / In the search of a better understanding of the electronic and magnetic properties of topological insulators we are faced with one of its most striking features, the existence of metallic surface states with helical spin texture which are protected from non-magnetic impurities. On the surface these spin channels allows a huge potential for applications in spintronic devices. There is much to do and treating calculations via \\textit{Ab initio} simulations allows us a predictive character that corroborates the elucidation of physical phenomena through experimental analysis. In this work we analyze the electronic properties of topological insulators such as: (Bi, Sb)$_2$(Te, Se)$_3$, Germanene and functionalized Germanene. Calculations based on DFT show the importance of the separation from interlayers of Van der Waals in materials like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. We show that due to stacking faults, small oscillations in the QLs axis (\\textit{Quintuple Layers}) can generate a decoupling of the Dirac cones and create metal states in the bulk phase Bi$_2$Te$_3$. Regarding the Bi$_2$Se$_3$ a systematic study of the effects of transition metal impurities was performed. We observed that there is a degeneracy lift of the Dirac cone if there is any magnetization on any axis. If the magnetization remains in plane, we observe a small shift to another reciprocal lattice point. However, if the magnetization is pointing out of the plane a lifting in energy occurs at the very $ \\Gamma $ point, but in a more intense way. It is important to emphasize that in addition to mapping the sites with their magnetic orientations of lower energy we saw that the lifting in energy is directly related to the local geometry of the impurity. This provides distinct STM images for each possible site, allowing an experimental to locate each situation in the laboratory. We also studied the topological transition in the alloy (Bi$_x$Sb$_{1-x}$)$_ 2$Se$_3$, where we identify a trivial and topological insulator for $x = 0$ and $x = 1$. Despite the obvious existence of such a transition, important details remain unclear. We conclude that doping with non-magnetic impurities provides a good technique for handling and cone engineering this family of materials so that depending on the range of doping we can eliminate conductivity channels coming from the bulk. Finally we studied a Germanene and functionalized Germanene with halogens. Using an asymmetrical functionalization and with the topological invariant $Z_2$ we noted that the Ge-I-H system is a topological insulator that could be applied in the development of spin-based devices.

Page generated in 0.0926 seconds