• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 19
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 23
  • 15
  • 15
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

On conformal submersions and manifolds with exceptional structure groups

Reynolds, Paul January 2012 (has links)
This thesis comes in three main parts. In the first of these (comprising chapters 2 - 6), the basic theory of Riemannian and conformal submersions is described and the relevant geometric machinery explained. The necessary Clifford algebra is established and applied to understand the relationship between the spinor bundles of the base, the fibres and the total space of a submersion. O'Neill-type formulae relating the covariant derivatives of spinor fields on the base and fibres to the corresponding spinor field on the total space are derived. From these, formulae for the Dirac operators are obtained and applied to prove results on Dirac morphisms in cases so far unpublished. The second part (comprising chapters 7-9) contains the basic theory and known classifications of G2-structures and Spin+ 7 -structures in seven and eight dimensions. Formulae relating the covariant derivatives of the canonical forms and spinor fields are derived in each case. These are used to confirm the expected result that the form and spinorial classifications coincide. The mean curvature vector of associative and Cayley submanifolds of these spaces is calculated in terms of naturally-occurring tensor fields given by the structures. The final part of the thesis (comprising chapter 10) is an attempt to unify the first two parts. A certain `7-complex' quotient is described, which is analogous to the well-known hyper-Kahler quotient construction. This leads to insight into other possible interesting quotients which are correspondingly analogous to quaternionic-Kahler quotients, and these are speculated upon with a view to further research.
42

Aspectos físicos e algébricos de espinores escuros /

Hoff da Silva, Julio Marny. January 2017 (has links)
Banca: Álvaro de Souza Dutra / Banca: Denis Dalmazi / Banca: José Abdalla Helayel Neto / Banca: Dionísio Bazeia / Banca: Vilson Zanchin / Resumo: Optei pela apresentação de uma análise crítica de alguns trabalhos levados a termo após o ingresso como Docente do Departamento de Física e Química da Faculdade de Engenharia de Guaratinguetá - UNESP, em subsituição à tradicional tese de Livre-Docência. Essa opção na sistemática de apresentação se coaduna com um duplo aspecto: apresentar criticamente as contribuições realizadas na área e consolidar perspectivas de continuidade do trabalho exposto / Abstract: Not available
43

Álgebra de Espinores e novos espinores em Física /

Coronado Villalobos, Carlos Hugo. January 2017 (has links)
Orientador: Júlio Marny Hoff da Silva / Banca: Saulo Henrique Pereira / Banca: Marco André Ferreira Dias / Banca: Maria Emilia Xavier Guimarães / Banca: José Abdalla Helayel-Neto / Resumo: Na presente tese abordaremos quatro tópicos importantes: espinores, covariantes bilineares, classificação de Lounesto e o teorema da inversão. Apresentamos a construção de covariantes bilineares para o espinor Elko e mostraremos a necessidade da deformação dos elementos da base da álgebra de Clifford com a finalidade de que as identidades de Fierz-Pauli-Kofink sejam satisfeitas. Estudamos também os ingredientes principais da classificação de espinores elaborada por Lounesto. Por último, construiremos três novas classes de espinores via o teorema da inversão a partir da premissa que o covariante bilinear $J_{\mu}$ seja nulo. Como consequência desta consideração esses novos espinores não possuem a dinâmica de Dirac, haja visto que $J_{\mu}$ na teoria de Dirac representa a corrente conservada. O surgimento de apenas três novas classes de espinores é uma consequência direta da imposição de que as identidades de Fierz-Pauli-Kofink sejam satisfeitas / The present thesis covers four important topics: spinors, bilinear covariants, Lounesto's classification and the inversion theorem. We show and explicit the construction of bilinear covariants for the Elko spinors and the necessity of deformation of the Cli ord algebra basis elements in order to satisfy the Fierz-Pauli-Ko nk identities. We also study the main ingredients of the classification of spinors elaborated by Lounesto. Finally, we construct three new classes of spinors via the inversion theorem from the premise that the bilinear covariant Jµ is null. As a consequence, these new spinors do not have usual dynamics of Dirac, have seen that Jµ in Dirac's theory represents the conserved current. The emergence of only three new classes of spinors is a direct consequence of the requeriment that Fierz-Pauli-Kofink's identities must hold / Doutor
44

Campos espinoriais ELKO / ELKO Spinor´s Field

Rogério, Rodolfo José Bueno [UNESP] 03 July 2014 (has links) (PDF)
Made available in DSpace on 2015-03-03T11:52:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-07-03Bitstream added on 2015-03-03T12:06:59Z : No. of bitstreams: 1 000798812.pdf: 406540 bytes, checksum: 7793d5a1f9bfbe358b5dde7a7418b448 (MD5) / O século passado é considerado como a era das Teorias Quânticas de Campos. Desta forma, neste trabalho, forneceremos todos os detalhes de uma descoberta teórica inesperada de uma partícula de matéria de spin 1/2 com dimensão de massa 1. Esses espinores recebem o nome de ELKO, o qual vem do acrônimo alemão Eigenspinores des Ladungskonjugationsoperators, e são fundamentados em um conjunto completo de autoespinores de helicidade dual do operador conjugação de carga. O ELKO pertence a um subgrupo do grupo completo de Lorentz. Portanto, a lei de transformação entre suas componentes não é dada pela simetria de paridade, e desta maneira não satisfaz a equação de Dirac. Intrinsicamente nas somas de spin para o ELKO aparece um termo que quebra a simetria de Lorentz, levando então à apreciação da Very Special Relativity, que nada mais é do que um subgrupo do grupo de Lorentz, cuja álgebra deixa as somas de spin invariantes ou covariantes. Pela razão do propagador do ELKO ser o mesmo de Klein-Gordon a menos de um fator, a lagrangiana associada é a do campo escalar, por esta razão o ELKO é dotado de dimensão de massa 1 / The last century is considered as the era of Quantum Field Theories. Thus, in this work, we provide all the details of an unexpected theoretical discovery of a matter particle spin 1/2 endowed with mass dimension 1. These spinors are the so called ELKO, which comes from the German acronym Eigenspinores des Ladungskonjugationsoperators, based on a complete set of a dual helicity eigenspinors of the charge conjugation operator. ELKO belongs to a subgroup of the full Lorentz group. Therefore, the law of transformation between its components is not given by the parity symmetry, and thus it does not satisfies the Dirac equation. It appears, intrinsically in the spin sums a Lorentz symmetry breaking term, then it will be better analysed within the Very Special Relativity, which is a subgroup of the Lorentz group, whose algebra leaves the spin sums invariant or covariant under transformations. Since the ELKO propagator is the same of Klein-Gordon propagator apart from a term, than the associated lagrangian is the scalar field one, for this reason ELKO is endowed with mass dimension 1
45

Formulações geométricas da teoria de Dirac e simetrias latentes da equação de Dirac-Kahler : desenvolvimentos algébricos e aplicações em teorias de calibre

Mosna, Ricardo Antonio, 1974- 16 February 2004 (has links)
Orientador: Jayme Vaz Jr / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-03T19:48:58Z (GMT). No. of bitstreams: 1 Mosna_RicardoAntonio_D.pdf: 807145 bytes, checksum: 25b46de178f11d5e74647a293b3413c9 (MD5) Previous issue date: 2004 / Resumo: Neste trabalho, obtemos novas formulações multivetoriais da equação de Dirac ¿ através da introdução de estruturas Z2-graduadas alternativas em álgebras de Clifford ¿ e exploramos certas simetrias latentes da equação de Dirac-Kähler para a obtenção de modelos de teorias de calibre, particularmente no contexto das interações eletrofracas. Discutimos ainda como as técnicas desenvolvidas no contexto de tais representações multivetoriais podem ser úteis em outras situações, como na construção de representações quaterniônicas da teoria de Dirac e no problema da reconstrução tomográfica de um espinor de Dirac. Com relação à equação de Dirac-Kähler, inicialmente revisitamos sua bem conhecida degenerescência em termos de quatro equações de Dirac desacopladas, definidas em diferentes ideais da álgebra. A arbitrariedade na escolha de tais ideais define uma simetria global da lagrangiana, que aqui estendemos a uma simetria local. Os campos de calibre resultantes então acoplam os diferentes ideais, de maneira que as interações entre os setores de quiralidade positiva e negativa são naturalmente suprimidas. Ainda, em tal formalismo, as antipartículas são automaticamente representadas na lagrangiana, com as quiralidades corretas. Ao restringirmos as interações àquelas que conservam a carga elétrica, o modelo resultante é equivalente ao modelo eletrofraco simétrico, desde que identifiquemos os léptons (ou quarks) de uma dada geração com os diferentes ideais. Quando a simetria é quebrada, de maneira que os ideais correspondentes ao neutrino (antineutrino) de quiralidade positiva (negativa) permane¸ cam fixos, o modelo de Glashow-Weinberg-Salam é recuperado. Tal formalismo também nos permite uma interpretação geométrica para o mecanismo de Higgs / Abstract: In this work, new multivector formulations of the Dirac equation are obtained via the introduction of alternative Z2-gradings of Clifford algebras. Certain latent symmetries of the Dirac-Kähler equation are also explored in order to construct gauge theory models, especially in the context of the electroweak interactions. We also discuss how the multivector techniques developed here can be useful in other situations, as in constructing quaternionic representations of the Dirac equation, and in obtaining a tomographic scheme for the state reconstruction of a Dirac spinor. With respect to the Dirac-Kähler equation, we start by revising its well-known fourfold degeneracy that leads to uncoupled Dirac equations living in minimal left ideals of the Dirac algebra. The ar-bitrariness in choosing one such system of ideals defines a global symmetry of the Dirac-Kähler Lagrangian. We gauged such symmetry by considering independent choices for the system of mini-mal left ideals at each spacetime point. The resulting gauge fields then naturally couple the different ideals, in a way that interactions between left-handed and right-handed particles are naturally sup-pressed. Moreover, the formalism automatically gives rise to a term in the Lagrangian corresponding to the associated antiparticles, with the correct handedness. By restricting the interactions to those conserving electric charge, the resulting model turns out to be equivalent to the symmetric model of electroweak interactions, provided that we identify the leptons (or quarks) of a given generation with the different ideals. When the symmetry is broken, so that the ideals corresponding to the right-handed neutrino and left-handed antineutrino remain fixed, the Glashow-Weinberg-Salam is recovered. The formalism also allows a geometric interpretation for the Higgs mechanism / Doutorado / Física / Doutor em Ciências
46

Secant varieties of Spinor varieties and of other generalized Grassmannians

Galgano, Vincenzo 18 December 2023 (has links)
Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Despite they have been studied for decades, several aspects of their geometry are still mysterious, among which identifiability and singularity of their points. In this thesis we study the secant varieties of lines of Grassmannians and of Spinor varieties. As first result, we completely determine their posets of orbits under the action of the groups SL and Spin, respectively. Then we solve the problems of identifiability and tangential-identifiability of points in the secant varieties of lines: as a consequence, we also determine the second Terracini locus to a Grassmannian and to a Spinor variety. Our main result concerns the singular locus of the secant variety of lines: we completely determine it for Grassmannians, and we give lower and upper bounds for Spinor varieties. Finally, we partially describe the poset of orbits in the secant variety of lines of any cominuscule variety.
47

Topics in quantum field theory : 1. Schwinger's action principle ; 2. Dispersion relations for inelastic scattering processes

Kibble, T. W. B. January 1958 (has links)
The subject matter of this thesis falls into two distinct parts. Chapters II to IV are devoted to a discussion of Schwinger's action principle, and chapters V and VI are concerned with the proof of dispersion relations for inelastic meson-nucleon scattering. The material of chapter II is based on some work done in collaboration with Dr. J.C. Polkinghorne, which has been published (Kibble and Polkinghorne 1957). This work was concerned with the clarification of certain points connected with the class of permissible variations in Schwinger's principle. There are, however, substantial changes in the present treatment, principally deriving from the introduction, in section II-5, of the concept of relative phases. This chapter is restricted to the case of non-relativistic quantum theory, and the discussion is extended to relativistic quantum field theory in chapter III. These chapters are devoted to a reformulation of Schwinger's action principle, and an investigation of the consequences of the new form of the action principle. Some of this material is necessarily contained in the work of Schwinger (1951, 1953a), but the treatment differs from his in several important respects. These are discussed in greater detail in section 2. Chapter IV is devoted to a discussion of higher order spinor Lagrangians, with particular reference to the use of a two-component field satisfying a second-order equation rather than a four-component spinor satisfying a first-order equation. This procedure has been suggested by Feynman and Gell-Mann (1958) in connection with their universal Fermi interaction. The work presented in this chapter was done jointly with Dr. J.C. Polkinghorne, and has been published (Kibble and Polkinghorne 1958). Chapters V and VI are devoted to a proof of the dispersion relations for the process in which a single meson is scattered on a nucleon into a state with several mesons. The proof follows the general lines of that by Bogolyubov, Medvedev and Polivanov (1956) for the case of elastic meson-nucleon scattering, This work has also been published (Kibble 1958). The notation employed in the thesis is summarized in appendix A. Appendix B is devoted to a discussion of consistency conditions on the Lagrangian function. The chapter number is omitted in references to sections or equations, except in the case of cross references between chapters.
48

Espinores exóticos e espinores RIM : aspectos físicos e algébricos /

Beghetto Junior, Dino January 2019 (has links)
Orientador: Julio Marny Hoff da Silva / Resumo: Espinores exóticos surgem quando a topologia da variedade $M$ tomada como sendo o espaço-tempo é suposta ser não-trivial, no sentindo que seu grupo fundamental é não-trivial: $\pi_1(M) \neq 0$. Assim, um novo termo exótico $\partial_\mu \theta$ surge na equação dinâmica destes espinores, e novas propriedades se apresentam. A não-trivialidade de $\pi_1(M)$ pode ser diretamente ligada a própria existência de buracos negros. Assim, estudamos, nesta tese, relações entre estruturas espinoriais exóticas e a taxa de emissão de radiação Hawking por buracos negros assintoticamente \textit{flat} em Relatividade Geral, encontrando equações diferenciais para o termo exótico, o que dá a possibilidade de inferir uma forma explícita para $\theta$. Também, tratamos aqui dos chamados espinores RIM, que são espinores que respeitam uma equação dinâmica não-linear chamada de equação não-linear de Heisenberg. Apresentamos dois lemas relativos a estes espinores: um deles encontrando restrições para ocorrer a decomposição de espinores de Dirac em termos de espinores RIM, e outro que nega a existência de espinores RIM exóticos, ou seja, relaciona a existência de espinores RIM a própria estrutura topológica do espaço-tempo. Ainda, encontramos um método de classificarmos os espinores RIM nas classes de Lounesto. Por fim, apresentamos, na forma de dois teoremas, maneiras de deformar homotopicamente tais espinores no que chamamos de \textit{spinor-plane}. / Abstract: Exotic spinors emerge when the topology associatd to the manifold $M$, which is token as being the spacetime, is suppose to be non-trivial, in the sense that its fundamental group is non-trivial: $\pi_1(M) \neq 0$. Thus, a new exotic term $\partial_\mu \theta$ rises from the dynamical equation related to these spinors, and new properties are in order. The non-triviality of $\pi_1(M)$ may be directly linked to the very existence of black holes. In this vein, we study some relations between exotic spinorial structures and the Hawking radiation emission rate by asymptotically flat black holes solutions of General Relativity, finding an equation from which an explicity form for the exotic term could be inferred. Moreover, we work on the so-called RIM spinors, which are spinor fields satisfying a non-linear dynamical equation known as Heiseing non-linear equation. We present two \textit{lemmata} related to these spinors: one of them gives us restrictions for the decompostion of Dirac fields in terms of RIM spinors to occur, while the other deny the existence of exotic RIM spinors, i.e., it relates the very existence of RIM spinors to the spacetime topological structure. Besides, we develop a classifying method for RIM spinors into the Lounesto classes. Finally, we present, in the form of two theorems, ways to homotopically deform such spinors in what we call the spinor-plane. / Doutor
49

Asymptotiska egenskaper för Lanczosspinoren / Asymptotic properties of the Lanczos spinor

Bäckdahl, Thomas January 2003 (has links)
<p>Asymptotically flat spaces are widely studied because it is one natural way of describing an isolated system in general relativity. In this thesis we study what happens to the Lanczos potential at spacelike infinity in such spacetimes. By transformations of the Weyl-Lanczos equation, we derive expressions for the limiting equations on both the timelike unit hyperboloid, and the timelike unit cylinder. Finally the Newman-Penrose formalism is used to get a component version of the equations.</p>
50

Asymptotiska egenskaper för Lanczosspinoren / Asymptotic properties of the Lanczos spinor

Bäckdahl, Thomas January 2003 (has links)
Asymptotically flat spaces are widely studied because it is one natural way of describing an isolated system in general relativity. In this thesis we study what happens to the Lanczos potential at spacelike infinity in such spacetimes. By transformations of the Weyl-Lanczos equation, we derive expressions for the limiting equations on both the timelike unit hyperboloid, and the timelike unit cylinder. Finally the Newman-Penrose formalism is used to get a component version of the equations.

Page generated in 0.0358 seconds