51 |
Relação entre os formalismos de Green-Schwarz e espinores puros para a supercordaMarchioro, Dáfni Fernanda Zenedin [UNESP] 03 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-03Bitstream added on 2014-06-13T20:27:16Z : No. of bitstreams: 1
marchioro_dfz_dr_ift.pdf: 456969 bytes, checksum: 2a5b04c825c9224829a3bca3da7ebeb7 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nesta tese, mostramos a equivalência dos formalismos de Green-Schwarz e de espinores puros para a supercorda. Partindo da ação de Green-Schwarz no semi-gauge de cone de luz e adicionando graus de liberdade fermiônicos, relacionamos os operadores BRST do formalismo de espinores puros e de Green-Schwarz no semi-gauge de cone de luz através de transformações de similaridade, indicando a equivalência das respectivas cohomologias. Esta prova de equivalência é uma generalização do procedimento usado para relacionar a superpartícula de Brink-Schwarz e a superpartícula do formalismo de espinores puros. / Abstracts: In this thesis, we have shown the equivalence of the Green-Schwarz and pure spinor formalisms for the superstring. Starting from the Green-Schwarz action in the semi-light-cone gauge additional fermionic degrees of freedom, we have related the BRST operator of pure spinor formalism to the semi-light-cone Green-Schwarz operator through similarity transformations, indicating the equivalence of the cohomologies. This equivalence proof is a generalization of the procedure used to related the Brink-Schwarz and pure spinor's superparticle.
|
52 |
Studies on Electron Dynamics in Deformed GrapheneZhai, Dawei January 2018 (has links)
No description available.
|
53 |
QCD corrections to $e^+e^-\rightarrow 4$ jetsWeinzierl, Stefan 08 September 1998 (has links) (PDF)
Cette thèse a pour objet les corrections perturbatives de CDQ pour la production de quatre jets dans l'annihilation des électrons et positrons. Les corrections à une boucle pour le sous-processus $e^+ e^- \rightarrow q \bar{q} Q \bar{Q}$ sont calculées avec de nouvelles méthodes qui comprennent la décomposition de couleur, la méthode des spineur d'hélicité, et une décomposition inspirée par la supersymmétrie. Nous avons également profité des contraintes découlants de l'unitarité et des limites colinéaires pour restreindre la forme analytique des amplitudes. Dans une deuxième phase, j'ai écrit un programme numérique qui combine des contributions dues aux corrections radiatives des sous-processus $e^+ e^- \rightarrow q \bar{q} Q \bar{Q}$ et $e^+ e^- \rightarrow q g g \bar{q}$ et dues aux corrections d'émission réelle. Le programme utilise le formalisme des dipoles pour annuler les divergences infra-rouge. L'analyse numérique contient des résultats sur la section efficace totale, le paramètre $D$ et la variable d'élargissement d'un jet.
|
54 |
Coherent Spin Dynamics of a Spin-1 Bose-Einstein CondensateChang, Ming-Shien 11 April 2006 (has links)
Bose-Einstein condensation (BEC) is a phenomenon in which identical bosons occupy the same quantum state below a certain critical temperature. A hallmark of BEC is the coherence between particles every particle shares the same quantum wavefunction and phase. This coherence has been demonstrated for the external (motional) degrees of freedom of the atomic condensates by interfering two condensates. In this thesis, the coherence is shown to extend to the internal spin degrees of freedom of a spin-1 Bose gas evidenced by the observed coherent and reversible spin-changing collisions. The observed coherent dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. Control of the coherent evolution of the system using magnetic fields is also demonstrated. The studies on spinor condensates begin by creating spinor condensates directly using all-optical approaches that were first developed in our laboratory. All-optical formation of Bose-Einstein condensates (BEC) in 1D optical lattice and single focus trap geometries are developed and presented. These techniques offer considerable flexibility and speed compared to magnetic trap approaches, and the trapping potential can be essentially spin-independent and are ideally suited for studying spinor condensates. Using condensates with well-defined initial non-equilibrium spin configuration, spin mixing of F = 1 and F = 2 spinor condensates of rubidium-87 atoms confined in an optical trap is observed. The equilibrium spin configuration in the F = 1 manifold confirms that 87Rb is ferromagnetic. The coherent spinor dynamics are demonstrated by initiating spin mixing deterministically with a non-stationary spin population configuration. Finally, the interplay between the coherent spin mixing and spatial dynamics in spin-1 condensates with ferromagnetic interactions is investigated.
|
55 |
Ausência de correlações entre as equações de onda para campos twistoriais covariantes e contravariantes ocorrentes nos formalismos espinoriais de infeld e van der waerden / Absence of dierential correlations between the wave equations for covariant and contravariant Twistor fields borne by the Infeld-van der waerden spinor formalisms for general relativityWeber, Karla 18 March 2014 (has links)
Made available in DSpace on 2016-12-12T20:15:50Z (GMT). No. of bitstreams: 1
Karla Weber.pdf: 792478 bytes, checksum: 5ad5bec34e3e16a7e56322ccf40af568 (MD5)
Previous issue date: 2014-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we will show that the wave equations for any twistor fields carrying a single index, which occur in the frameworks of the Infeld-van der Waerden γ formalisms for General Relativity, must be formally the same. This result stems mainly from the fact that the spinor transcription of the traditional conformal Killing equation provides twistor equations of the same form. A consequence of this result is that the usual γ formalism covariant differential devices for controlling valences of spinor-index configurations turn out to be inapplicable as regards the speciation of the formal patterns for the wave equations under consideration here. / Mostraremos neste trabalho que as equações de onda para quaisquer campos twistoriais de um único índice, as quais ocorrem no contexto dos formalismos espinoriais γ de Infeld e van der Waerden para a Relatividade Geral, devem ser formalmente as mesmas. Este resultado decorre essencialmente do fato que a transcrição espinorial da tradicional equação conforme de Killing fornece equações twistoriais da mesma forma. Uma conseqüência deste resultado e que os dispositivos diferenciais covariantes do formalismo γ, os quais usualmente servem para controlar valências de conjurações indiciais, tornam-se inaplicáveis no que concerne a obtenção dos padrões formais das equações de onda sob consideração aqui.
|
56 |
Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates / Thermodynamique et Thermodynamique et magnétisme dans des condensats de Bose-Einstein de spin 1 avec interactions antiferromagnétiquesFrapolli, Camille 29 March 2017 (has links)
Dans ce manuscrit, nous présentons une étude expérimentale d'un gaz de Bose de spin 1 avec des interactions antiferromagnétiques avec des atomes de sodium ultra-froids dans l'état hyperfin F=1. Les trois composantes Zeeman sont piégées simultanément dans des pièges dipolaires optiques. Nous obtenons un condensat de Bose-Einstein spineur par refroidissement évaporatif et nous étudions ses propriétés magnétiques. Il y a deux types d’interactions dans le système: des interactions de contact qui ne changent pas les populations des composantes Zeeman et des interactions d'échange de spin qui les modifient. Une compétition entre l'énergie Zeeman et l'énergie d'échange impose l'ordre magnétique dans le système.Nous étudions dans un premier temps les phases magnétiques de condensats de Bose-Einstein spineurs a température quasi nulle. L'état fondamental comporte deux phases qui sont observées en variant le champ magnétique (donc l'énergie Zeeman quadratique) et la magnétisation de l'échantillon. Dans la phase antiferromagnétique, le spin de l'échantillon est simplement selon l'axe du champ magnétique. Dans la phase polaire, une composante transverse apparait pour minimiser l'énergie Zeeman. Pour une magnétisation nulle, le condensat spineur forme un nématique de spin. Cet état, nommé par analogie avec la phase nématique dans les cristaux liquides, est caractérisée par des fluctuations de spin orthogonales à un axe particulier, mais sans préférer une des deux direction sur cet axe. Dans chacune des deux phases, l'ordre nématique se manifeste par un minimisation de la longueur du spin transverse en imposant une valeur particulière ($pi$) de la phase relative des composantes Zeeman ${theta = phi_{+1} + phi_{-1} - 2 phi_{0}}$. Nous mesurons la longueur du spin transverse en analysant le bruit de spin après une rotation.Dans un second temps, nous étudions la thermodynamique d'un gaz de Bose de spin 1 près de la température critique pour la condensation de Bose-Einstein. Nous mesurons plusieurs scénarios de condensation séquentiels en fonction de la magnétisation et du champ magnétique. La température critique mesurée révèle que les interactions ont un effet important quand la condensation d'une composante se fait en présence d'un condensat dans une autre composante. Nous utilisons une théorie d'Hartree-Fock simplifiée, en négligeant les interactions d’échange de spin. Nous constatons que les résultats expérimentaux sont en bon accord. Cependant, pour de bas champs magnétiques, le diagramme de phase thermodynamique est largement modifié par les interactions d'échange de spin, ce qui pose de nouvelles questions sur leur rôle a température finie. / In this manuscript, we present an experimental study of a Spin 1 Bose gas with antiferromagnetic interactions with ultracold sodium atoms in the F=1 manifold. The three Zeeman components are trapped simultaneously in optical dipole traps. By performing evaporative cooling, we obtain quasi-pure spinor Bose-Einstein condensates of which we study the magnetic properties. There are two types of interactions between the constituents of the system: Contact interactions that do not change the Zeeman populations and spin-exchange contact interactions that do. A competition between Zeeman energy and the spin-exchange energy sets the magnetic ordering in the system.We first study the magnetic phases of spinor Bose-Einstein condensates near zero temperature. The ground state present two phases that are observed by varying the magnetic field (hence the quadratic Zeeman energy) and the magnetization of the sample. In the antiferromagnetic phase, the spin of the sample is purely along the direction of the magnetic field. In the broken-axisymmetry phase, a transverse component appears in order to minimize the Zeeman energy. For zero magnetization, the spinor condensate forms a spin nematic. This state, named in analogy with the liquid crystal nematic phase, is characterized by spin fluctuations orthogonal to a particular axis, with no preferred direction along that axis. In both phases, spin nematic order manifests as a minimization of the transverse spin length that is realized by enforcing a particular value ($pi$) of the relative phase of the Zeeman components $theta = phi_{+1} + phi_{-1} - 2 phi_0$. We measure the transverse spin length by analyzing spin noise after a spin rotation.Second, we study the thermodynamics of an antiferromagnetic spin 1 Bose gas next to the critical temperature for Bose-Einstein condensation. We measure several sequential condensation scenarii depending on the magnetization and the magnetic field. The measured critical temperatures reveal a large effect of interactions when one of the Zeeman component condenses in presence of a condensate in another component. We use a simplified Hartree-Fock theory, neglecting the spin exchange interactions and note a good agreement with our data. However, for low magnetic fields, the thermodynamic phase diagram is strongly modified which raises new open questions about the role of spin exchange interactions at finite temperatures.
|
57 |
Twistorový operátor v symplektické spinorové geometrii / Twistor operator in symplectic spin geometryDostálová, Marie January 2011 (has links)
The topic of the diploma thesis is symplectic spinor geometry. Its re- search was started by D. Shale, B. Kostant and K. Habermann. We focus our attention to one of the so called symplectic twistor operators introduced by S. Kr'ysl. We investigate the action of this operator on real even dimensio- nal vector spaces considered as symplectic manifold, its invariance properties and regularity. We describe a part of the kernel of the symplectic twistor operator when acting on symplectic spinors on R2. The kernel forms a repre- sentation of the so called metaplectic group (double cover of the symplectic group). 1
|
58 |
Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions / Magnétisme dans des condensats condensats de Bose-Einstein de spin 1 avec interactions antiferromagnétismesCorre, Vincent 15 December 2014 (has links)
Dans cette thèse nous étudions expérimentalement les propriétés magnétiques de condensats de sodium de spin 1 à l'équilibre. Dans ce système les atomes peuvent occuper chacun des trois états Zeeman caractérisés par la projection de leur spin sur l'axe de quantification m=+1,0,-1. Nous mesurons l'état de spin à N particules du système en fonction du champ magnétique appliqué et et de la magnétisation (différence entre les populations des états m=+1 et m=-1) du nuage atomique. Nos mesures sont en très bon accord avec la prédiction de la théorie de champ moyen, et nous identifions deux phases magnétiques résultant de la compétition entre les interactions de spin antiferromagnétiques et l'effet du champ magnétique. Nous décrivons ces deux phases en terme d'un ordre nématique de spin caractérisant la symétrie de l'état de spin à N particules. Dans une seconde partie nous nous concentrons sur les propriétés du condensat à très faible magnétisation et soumis à un faible champ magnétique. Dans ces conditions, la symétrie du système se manifeste à travers de très grandes fluctuations de spin. Ce phénomène n'est pas explicable par une théorie de champs moyen naïve, et nous développons une approche statistique plus élaborée pour décrire l'état de spin du condensat. Nous mesurons les fluctuations de spin et nous sommes capables de déduire de leur analyse la température caractérisant le degré de liberté de spin du condensat. Nous trouvons que cette température diffère de celle décrivant les atomes thermiques entourant le condensat. Nous interprétons cette différence comme une conséquence du faible couplage entre ces deux systèmes. / In this thesis we study experimentally the magnetic properties of spin-1 Bose-Einstein condensate of Sodium at equilibrium. In this system the atoms can occupy any of the three Zeeman states characterized by their spin projection on the quantization axis m=+1,0,-1. We measure the many-body spin state of the system as a function of the applied magnetic field and of the magnetization (difference between the populations of the spin states m=+1 and m=-1) of the atomic sample. We find that our measurements reproduce very well the mean-field prediction, and we identify two magnetic phases expressing the competition between the antiferromagnetic inter-particle interactions and the effect of the magnetic field. We describe these phases in terms of a spin nematic order characterizing the symmetry of the many-body spin state. In a second part we focus on the properties of condensates of very low magnetization under a weak magnetic field. In these conditions, the symmetry of the system manifests itself in huge spin fluctuations. This phenomenon is not explainable by a naive mean-field theory and we develop a more elaborate statistical approach to describe the spin state of the condensate. We measure the spin fluctuations and are able from their analysis to infer the temperature characterizing the spin degree of freedom of the condensate. We find that this temperature differs from the temperature of the thermal fraction surrounding the condensate. We interpret this difference as a consequence of the weak coupling between these two systems.
|
59 |
Experiments with Coherently-Coupled Bose-Einstein condensates: from magnetism to cosmologyCominotti, Riccardo 16 November 2023 (has links)
The physics of ultracold atomic gases has been the subject of a long standing theoretical and experimental research over the last half century. The development of evaporative cooling techniques and the realization of the first Bose-Einstein Condensate (BEC) in 1995 gave a great advantage to the field. A great experimental knowledge of the fundamental properties of BECs, such as long-range coherence, superfluidity and topological excitations, has now been acquired. On top of these advances, current research on ultracold atoms is also focusing on quantum simulations, which aim at building analogue models of otherwise difficult to compute physical systems in the lab. In this context, BECs, with their enhanced coherence, many-body dynamics and superfluid character offer a powerful platform for advances in the field. Shortly after the first realization of a BEC, research started also investigating the physics of quantum mixtures of a BECs, either composed of different atomic species or isotopes, or of atoms occupying different hyperfine states. The latter are known as spin mixtures, or spinor condensates. The presence of multiple components interacting through mutual contact interactions enriches the physics of the condensate, introducing ground states with magnetic ordering as well as spin dynamics, which can be order of magnitudes less energetic than the density one. On top of this, hyperfine states can be coherently coupled with an external resonant radiation. Interesting physics arises when the strength of the coupling is comparable with the energy of spin excitations, an example of which is given by the emergence of the internal Josephson effect. This regime has been the subject of intense theoretical studies in the past twenty years, however its experimental realization on ultracold atomic platforms have been proven to be challenging, with experiments strongly limited by coherence times of few tens of milliseconds. In fact, the small energy scale of spin excitations reflects in a high sensitivity coupling to environmental magnetic noise, which affects the resonant condition. The experimental apparatus on which I worked during my Ph.D. solve this problem employing a magnetic shield that surrounds the science chamber, attenuating external magnetic fields by 6 orders of magnitudes.
During my Ph.D., I investigated the properties of a coherently coupled mixture of BEC of Sodium 23, performing different experiments in two atomic configurations. The first configuration consist of a mixture of hyperfine states, namely the |F=1, mF = -1> and |F=1, mF = +1>, coupled by a two-photon transition, which is characterized by miscibility in the ground state. Another configuration was instead realized working with a strongly immiscible mixture of |F=1, mF=-1> and |F=2, mF = -2>, realized through with a one photon transition.
My first experiment was devoted to the characterization of different methods of manipulation of the coupled miscible mixture in an elongated quasi-1D geometry. In Local Density Approximation (LDA), The dynamics of the system, depends on the atom number difference, the relative phase, and coupling to mean field energy ratio, can be fully described as an internal Josephson junction. We characterized this dynamics on a sample an inhomogeneous spatial profile, developing three different protocols for state manipulations.
In a second experiment, I developed a protocol to generate Faraday waves in an unpolarized miscible mixture. Faraday waves are classical non-linear waves characterized by a regular pattern, that originate in classical and quantum fluids via a parametric excitation in the fluid. Interestingly enough, this process resembles the phase of reheating of the early universe, where the oscillation of the inflaton field is thought to have excited particles out of the vacuum. In analogy with this phenomenon, the oscillation of the inflaton field can be simulated with the periodic modulation of the trapping potential.
On top of this, in a spin mixture, the parametric modulation can excite either in-phase (density) modes or out-of-phase (spin) modes, as two possible elementary excitations are present in the system. By extracting the spatial periodicity of the generated pattern at different modulation frequencies, I was then able to measure the dispersion relations for both density and spin modes of the system. In the presence of the coherent coupling, when spin excitations becomes gapped, we further demonstrate the scaling of the gap with the strength of the coupling radiation.
The third experiment I realized concerned the characterization of the magnetic ground state of a spatially extended immiscible mixture in the presence of the coherent coupling. The Hamiltonian of such a system is formally equivalent to a continuous version of the transverse field Ising model, which describes magnetic materials at zero temperature. In this mapping, a nonlinear interaction term arises from the ratio between the self-interaction energy and the strength of the coupling, which acts as the transverse field. As the ratio between the two quantities is varied above and below one, the ground state of the system spontaneously changes from a paramagnetic phase to an ordered ferromagnetic phase, featuring two equivalent and opposite magnetizations, a signature of the occurrence of a second order quantum phase transition (QPT). Furthermore, in the magnetic model, the degeneracy between the two ferromagnetic ground states can be broken by introducing an additional longitudinal field. In the atomic case, the role of this additional field is taken by the detuning between the coupling radiation and the resonant transition frequency of non-interacting atoms.
I characterized the QPT developing protocols to manipulate the spin mixture in its spatially extended ground state, varying the longitudinal field. Leveraging on the inhomogeneity of a BEC trapped in the harmonic potential, a smooth variation of the spin self-interaction energy occurs spontaneously in space, introducing different magnetic regimes at fixed coupling strength. These protocols gave access to a characterization of static properties typical of magnetic materials, such as the presence of an hysteresis cycle. The occurrence of the phase transition was instead validated by a measurement of the magnetic susceptibility and corresponding fluctuations, which both show a divergence when crossing the QPT critical point. At last, I developed a protocol to smoothly manipulate the position of magnetic domain walls, the least energetic excitations in a ferromagnet.
While the previous study focused on static properties, the last experimental investigation presented in this thesis was devoted to the study of the dynamics of the metastable ferromagnetic region of the BEC. As a result of the presence of an hysteresis cycle, it is possible to engineer states of the ferromagnetic energy landscape that are homogeneously prepared either in the global minimum, with trivial dynamics, or in the metastable, higher energy, local minima. In the latter case, a classical system should eventually decay towards the global minimum, driven by temperature fluctuations which overtop the energy barrier separating the two minima. For a quantum system described by a field theory, such as a ferromagnetic BEC, the decay towards the global minimum occurs by tunneling through the barrier, triggered by quantum fluctuations. The event of tunneling is known as False Vacuum Decay (FVD), and is of outstanding relevance also for high energy physics and cosmology, were the first theoretical models were developed. In the FVD model, the decay towards the global minimum, the true vacuum, is a stochastic process that occurs only if a resonant bubble of true vacuum is formed. Once formed, the bubble will eventually expand throughout the whole system, as the true vacuum is energetically favorable. The probability for such a bubble to form can be approximately calculated analytically in 1D, and should depend exponentially on the height of the barrier the field has to tunnel through. Due to the exponentially long time scale of the process, experimental observations of FVD were still lacking.
Thanks to the enhanced coherence time of the superfluid ferromagnetic mixture, and to the precise control of the barrier height through the detuning from atomic resonance, we were able to observe the event of bubble nucleation in a ferromagnetic BEC. To corroborate the observation, I measured the characteristic timescale of the decay for different values of the control parameters. Results were successfully compared first with numerical simulation, and then validated by instanton theory.
|
60 |
Relative number squeezing in a Spin-1 Bose-Einstein condensateBookjans, Eva M. 15 November 2010 (has links)
The quantum properties of matter waves, in particular quantum correlations and entanglement are an important frontier in atom optics with applications in quantum metrology and quantum information. In this thesis, we report the first observation of sub-Poissonian fluctuations in the magnetization of a spinor 87Rb condensate. The fluctuations in the magnetization are reduced up to 10 dB below the classical shot noise limit. This relative number squeezing is indicative of the predicted pair-correlations in a spinor condensate and lay the foundation for future experiments involving spin-squeezing and entanglement measurements. We have investigated the limits of the imaging techniques used in our lab, absorption and fluorescence imaging, and have developed the capability to measure atoms numbers with an uncertainly < 10 atoms. Condensates as small as ≈ 10 atoms were imaged and the measured fluctuations agree well with the theoretical predictions. Furthermore, we implement a reliable calibration method of our imaging system based on quantum projection noise measurements. We have resolved the individual lattice sites of a standing-wave potential created by a CO2 laser, which has a lattice spacing of 5.3 µm. Using microwaves, we site-selectively address and manipulate the condensate and therefore demonstrate the ability to perturb the lattice condensate of a local level. Interference between condensates in adjacent lattice sites and lattice sites separated by a lattice site are observed.
|
Page generated in 0.2922 seconds