61 |
Spacetime as a Hamiltonian Orbit and Geroch's Theorem on the Existence of FermionsBergstedt, Viktor January 2020 (has links)
Over a century since its inception, general relativity continues to lie at the heart of some of the most researched topics in theoretical physics. It seems likely that the coveted solutions to problems like quantum gravity are to be found in an extension of general relativity, one which may only be visible in an alternate formulation of the theory. In this thesis we consider the possibility of casting general relativity in the form of an initial value problem where spacetime is seen as the evolution of space. This evolution is shown to be constrained and of Hamiltonian type. Not all spacetimes are physically acceptable. To be compatible with particle physics, one would like spacetime to accommodate fermions. Here we can take comfort in Geroch’s theorem, which implies that any spacetime that admits a Hamiltonian formulation automatically supports the existence of fermions. We review the elements that go into the proof of this theorem. / Allmän relativitetsteori har i över hundra år legat i teoretiska fysikens framkant. Det är möjligt att lösningarna på öppna problem som kvantiseringen av gravitation går att finna i en utvidgning av allmän relativitetsteori – och kanske uppenbarar sig denna utvidgning bara ur en alternativ formulering av teorin. I den här uppsatsen formuleras allmän relativitetsteori och dess Einsteinekvationer som ett begynnelsevärdesproblem, genom vilket rumtiden kan betraktas som rummets historia. Vi visar att rummets rörelseekvationer är Hamiltons ekvationer med tvångsvillkor. Enligt partikelfysiken bör fermioner kunna finnas till i rumtiden. Härom kan vi åberopa Gerochs sats, enligt vilken rumtider som har en Hamiltonsk formulering också medger fermioner. Vi redogör för huvuddragen i beviset av Gerochs sats.
|
Page generated in 0.03 seconds